假設(shè)你有一筆資金用于投資,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下:
方案一:每天回報40元;
方案二:第一天回報10元,以后每天的回報比前一天多回報10元;
方案三:第一天回報0.4元,以后每天的回報是前一天的兩倍.
若投資的時間為天,為使投資的回報最多,你會選擇哪種方案投資?
(A)方案一 (B)方案二 (C)方案三 (D)都可以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b為常數(shù)).
(I)若g(x)在x=l處的切線方程為y=kx-5(k為常數(shù)),求b的值;
(II)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f’(x),若存在唯一的實(shí)數(shù)x0,使得f(x0)=x0與f′(x0)=0同時成立,求實(shí)數(shù)b的取值范圍;
(III)令F(x)=f(x)-g(x),若函數(shù)F(x)存在極值,且所有極值之和大于5+1n2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖4,已知三棱柱ABC—A1B1C1的側(cè)棱與底面垂直,且∠ACB=90°,
∠BAC=30°,BC=1,AA1=,點(diǎn)P、M、N分別為BC1、CC1、AB1
的中點(diǎn).
(1)求證:PN//平面ABC;
(2)求證:AB1⊥A1M;
(3)求二面角C1—A B1—A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)的圖象過點(diǎn).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求函數(shù)的最小正周期及最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,一矩形鐵皮的長為8cm,寬為5cm,在四個角上截去
四個相同的小正方形,制成一個無蓋的小盒子,問小正方形的邊長
為多少時,盒子容積最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com