(2013•濟寧二模)將函數(shù)y=2cos2x的圖象向右平移
π
2
個單位長度,再將所得圖象的所有點的橫坐標縮短到原來的
1
2
倍(縱坐標不變),得到的函數(shù)解析式為( 。
分析:利用導(dǎo)公式以及函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可以求得變換后的函數(shù)的解析式.
解答:解:將函數(shù)y=2cos2x的圖象向右平移
π
2
個單位長度,可得函數(shù)y=2cos[2(x-
π
2
)]=cos(2x-π)=-cos2x的圖象;
再將所得圖象的所有點的橫坐標縮短到原來的
1
2
倍(縱坐標不變),得到的函數(shù)y=-cos4x的圖象,
故選D.
點評:本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•濟寧二模)已知圓(x-a)2+(y-b)2=r2的圓心為拋物線y2=4x的焦點,且與直線3x+4y+2=0相切,則該圓的方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濟寧二模)對于平面α和共面的直線m,n,下列命題是真命題的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濟寧二模)定義在(0,
π
2
)上的函數(shù)f(x),其導(dǎo)函數(shù)是f′(x),且恒有f(x)<f′(x)•tanx成立,則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濟寧二模)設(shè)二次函數(shù)f(x)=ax2-4x+c(x∈R)的值域為[0,+∞),則
1
c
+
9
a
的最小值為( 。

查看答案和解析>>

同步練習冊答案