【題目】設(shè),函數(shù),(為自然對(duì)數(shù)的底數(shù)),且函數(shù)的圖象與函數(shù)的圖象在處有公共的切線.
(Ⅰ)求的值;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)證明:當(dāng)時(shí),在區(qū)間內(nèi)恒成立.
【答案】(Ⅰ)(Ⅱ)詳見解析(Ⅲ)詳見解析
【解析】
試題分析:(Ⅰ)由導(dǎo)數(shù)幾何意義得,分別求導(dǎo)得(Ⅱ)由于,所以根據(jù)導(dǎo)函數(shù)是否變號(hào)進(jìn)行討論:當(dāng)時(shí),,在定義域內(nèi)單調(diào)遞增,當(dāng)時(shí),先增后減再增(Ⅲ)證明不等式恒成立問題,一般轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題,即證的最小值大于零,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性:時(shí),在區(qū)間內(nèi)單調(diào)遞減,從而
試題解析:(Ⅰ),
由,得.……………………………………2分
(Ⅱ),
當(dāng)時(shí),即時(shí),,從而函數(shù)在定義域內(nèi)單調(diào)遞增,
當(dāng)時(shí),,此時(shí)
若,,則函數(shù)單調(diào)遞增;
若,,則函數(shù)單調(diào)遞減;
若時(shí),,則函數(shù)單調(diào)遞增.……………………6分
(Ⅲ)令,則.
,令,則.
當(dāng)時(shí),,
又當(dāng)時(shí),,從而單調(diào)遞減;
所以.
故當(dāng)時(shí),單調(diào)遞增;
又因?yàn)?/span>,故當(dāng)時(shí),,
從而函數(shù)在區(qū)間單調(diào)遞減;
又因?yàn)?/span>
所以在區(qū)間恒成立.…………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地?cái)M建一座長(zhǎng)為640米的大橋,假設(shè)橋墩等距離分布,經(jīng)設(shè)計(jì)部門測(cè)算,兩端橋墩造價(jià)總共為100萬(wàn)元,當(dāng)相鄰兩個(gè)橋墩的距離為米時(shí)(其中).中間每個(gè)橋墩的平均造價(jià)為萬(wàn)元,橋面每1米長(zhǎng)的平均造價(jià)為萬(wàn)元.
(1)試將橋的總造價(jià)表示為的函數(shù);
(2)為使橋的總造價(jià)最低,試問這座大橋中間(兩端橋墩除外)應(yīng)建多少個(gè)橋墩?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)為常數(shù),且在區(qū)間變化時(shí),求的最小值;
(2)證明:對(duì)任意的,總存在,使得 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店為了更好地規(guī)劃某種商品進(jìn)貨的量,該商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了組數(shù)據(jù)作為研究對(duì)象,如下圖所示((噸)為該商品進(jìn)貨量, (天)為銷售天數(shù)):
(Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點(diǎn)圖:
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅲ)根據(jù)(Ⅱ)中的計(jì)算結(jié)果,若該商店準(zhǔn)備一次性進(jìn)貨該商品噸,預(yù)測(cè)需要銷售天數(shù);
參考公式和數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在對(duì)人們休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人,女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2列聯(lián)表;
(Ⅱ)能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為性別與休閑方式有關(guān)系?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),點(diǎn)在軸上,點(diǎn)在軸的正半軸上,點(diǎn)在直線上,且滿足
(Ⅰ)當(dāng)點(diǎn)在軸上移動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)做直線與軌跡交于兩點(diǎn),若在軸上存在一點(diǎn),使得是以點(diǎn)為直角頂點(diǎn)的直角三角形,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地自來水苯超標(biāo),當(dāng)?shù)刈詠硭緦?duì)水質(zhì)檢測(cè)后,決定在水中投放一種藥劑來凈化水質(zhì),已知每投放質(zhì)量為的藥劑后,經(jīng)過天該藥劑在水中釋放的濃度(毫克/升)滿足,其中,當(dāng)藥劑在水中的濃度不低于5(毫克/升)時(shí)稱為有效凈化;當(dāng)藥劑在水中的濃度不低于5(毫克/升)且不高于10(毫克/升)時(shí)稱為最佳凈化.
(Ⅰ)如果投放的藥劑質(zhì)量為,試問自來水達(dá)到有效凈化一共可持續(xù)幾天?
(Ⅱ)如果投放的藥劑質(zhì)量為,為了使在9天(從投放藥劑算起包括9天)之內(nèi)的自來水達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象上有一點(diǎn)列,點(diǎn)在軸上的射影是,且 (且), .
(1)求證: 是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;
(2)對(duì)任意的正整數(shù),當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
(3)設(shè)四邊形的面積是,求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com