【題目】已知,設(shè).

1)若圖象中相鄰兩條對(duì)稱軸間的距離不小于,求的取值范圍;

2)若的最小正周期為,且當(dāng)時(shí),的最大值是,求的解析式,并說明如何由的圖象變換得到的圖象.

【答案】1;(2;平移變換過程見解析.

【解析】

1)根據(jù)平面向量的坐標(biāo)運(yùn)算,表示出的解析式,結(jié)合輔助角公式化簡(jiǎn)三角函數(shù)式.結(jié)合相鄰兩條對(duì)稱軸間的距離不小于及周期公式,即可求得的取值范圍;

2)根據(jù)最小正周期,求得的值.代入解析式,結(jié)合正弦函數(shù)的圖象、性質(zhì)與的最大值是,即可求得的解析式.再根據(jù)三角函數(shù)圖象平移變換,即可描述變換過程.

1)由題意可知,

,

2)∵,

,

∴當(dāng)時(shí)

圖象上所有點(diǎn)向右平移個(gè)單位,得到的圖象;再將得到的圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變,得到的圖象(或?qū)?/span>圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變,得到的圖象;再將得到的圖象上所有點(diǎn)向右平移個(gè)單位,得到的圖象)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解人們對(duì)延遲退休年齡政策的態(tài)度,某部門從網(wǎng)年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持延遲退休的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

(I)由頻率分布直方圖估計(jì)年齡的眾數(shù)和平均數(shù);

(II)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)延遲退休年齡政策的支持度有差異;

參考數(shù)據(jù):

(III)若以45歲為分界點(diǎn),從不支持延遲退休的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2.求抽到的2人中1人是45歲以下,另一人是45歲以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中x>0,k為常數(shù),e為自然對(duì)數(shù)的底數(shù).

(1)當(dāng)k≤0時(shí),求的單調(diào)區(qū)間;

(2)若函數(shù)在區(qū)間(1,3)上存在兩個(gè)極值點(diǎn),求實(shí)數(shù)k的取值范圍;

(3)證明:對(duì)任意給定的實(shí)數(shù)k,存在(),使得在區(qū)間()上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題:方程表示焦點(diǎn)在軸上的雙曲線:命題:若存在,使得成立.

1)如果命題是真命題,求實(shí)數(shù)的取值范圍;

2)如果為假命題,為真命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,,則下面結(jié)論正確的是( )

A. 上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

B. 上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

C. 上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

D. 上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是函數(shù)的圖象上任意兩點(diǎn),若,的中點(diǎn),且的橫坐標(biāo)為

1)求;

2)若,求;

3)已知數(shù)列的通項(xiàng)公式),數(shù)列的前項(xiàng)和為,若不等式對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當(dāng)x1時(shí),f(x)=2x﹣1,則f(),f(),f()的大小關(guān)系是( 。

A. f()<f()<f( B. f()<f()<f(

C. f()<f()<f( D. f()<f()<f(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,E、F、G、H分別是棱、、、的中點(diǎn).

1)判斷直線的位置關(guān)系,并說明理由;

2)求異面直線所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:①方程表示的圖形是一個(gè)點(diǎn);②命題,則為真命題;③已知雙曲線的左右焦點(diǎn)分別為,過右焦點(diǎn)被雙曲線截得的弦長(zhǎng)為4的直線有3;④已知橢圓上有兩點(diǎn),,若點(diǎn)是橢圓上任意一點(diǎn),且,直線,的斜率分別為,則為定值.

其中說法正確的序號(hào)是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案