設(shè)直線與拋物線交于P、Q兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),直線PF,QF分別交拋物線點(diǎn)M、N,則直線MN的方程為       
解:設(shè),由于過焦點(diǎn),所以有
再設(shè),則有,
點(diǎn)代入直線方程有,兩邊同乘以,
,所以,同理,
故所求直線為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若拋物線的頂點(diǎn)在原點(diǎn),其準(zhǔn)線方程過雙曲線-=1(,)的一個(gè)焦點(diǎn),如果拋物線與雙曲線交于(,),(,-),求兩曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,為坐標(biāo)原點(diǎn).
(Ⅰ)過點(diǎn)作兩相互垂直的弦,設(shè)的橫坐標(biāo)為,用表示△的面積,并求△面積的最小值;
(Ⅱ)過拋物線上一點(diǎn)引圓的兩條切線,分別交拋物線于點(diǎn), 連接,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓M的中心在坐標(biāo)原點(diǎn)D,左、右焦點(diǎn)F1,F(xiàn)2在x軸上,拋物線N的頂點(diǎn)也在原點(diǎn)D,焦點(diǎn)為F2,橢圓M與拋物線N的一個(gè)交點(diǎn)為A(3,).

(I)求橢圓M與拋物線N的方程;
(Ⅱ)在拋物線N位于橢圓內(nèi)(不含邊界)的一段曲線上,是否存在點(diǎn)B,使得△AF1B的外接圓圓心在x軸上?若存在,求出B點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:和直線
(1)當(dāng)時(shí),求圓上的點(diǎn)到直線距離的最小值;
(2)當(dāng)直線與圓C有公共點(diǎn)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

己知F1 F2是橢圓(a>b>0)的兩個(gè)焦點(diǎn),若橢圓上存在一點(diǎn)P使得,則橢圓的離心率e的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖,橢圓的焦點(diǎn)在軸上,左、右頂點(diǎn)分別為、,上頂點(diǎn)為,拋物線、分別以、為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn),相交于直線上一點(diǎn).
(Ⅰ)求橢圓及拋物線、的方程;
(Ⅱ)若動(dòng)直線與直線垂直,且與橢圓交于不同的兩點(diǎn),已知點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知B(-6,0),C(6,0)是三角形ABC的兩個(gè)頂點(diǎn),內(nèi)角A、B、C滿足,求頂點(diǎn)A運(yùn)動(dòng)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓上一點(diǎn)P到左焦點(diǎn)的距離為5,則其到右焦點(diǎn)的距離為( 。
A.5B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案