【題目】已知函數(shù),且.
(1)求函數(shù)的極值;
(2)當(dāng)時(shí),證明:.
【答案】(1)當(dāng)時(shí),函數(shù)有極大值,當(dāng)時(shí),函數(shù)有極小值;(2)證明見解析.
【解析】
試題分析:(1)求極值,可先求得導(dǎo)數(shù),然后通過解不等式確定增區(qū)間,解不等式確定減區(qū)間,則可得極大值和極小值;(2)要證明此不等式,我們首先研究不等式左邊的函數(shù),記,求出其導(dǎo)數(shù),可知在上單調(diào)遞增,在上單調(diào)遞減,,這是時(shí)最小值,,這是時(shí)的最大值,因此要證明題中不等式,可分類,和分別證明.
試題解析:(1)依題意,,
故,
令,則或; 令,則,
故當(dāng)時(shí),函數(shù)有極大值,當(dāng)時(shí),函數(shù)有極小值.
(2) 由(1)知,令,
則,
可知在上單調(diào)遞增,在上單調(diào)遞減,令.
① 當(dāng)時(shí),,所以函數(shù)的圖象在圖象的上方.
② 當(dāng)時(shí),函數(shù)單調(diào)遞減,所以其最小值為最大值為2,而,所以函數(shù)的圖象也在圖象的上方.
綜上可知,當(dāng)時(shí),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為豐富老年人的業(yè)余文化生活,要從老年合唱團(tuán)的20位老年人中隨機(jī)抽取3位去參觀學(xué)習(xí).請(qǐng)采用抽簽法進(jìn)行抽樣,寫出抽樣過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列關(guān)系:其中具有相關(guān)關(guān)系的是( )
①考試號(hào)與考生考試成績(jī); ②勤能補(bǔ)拙;
③水稻產(chǎn)量與氣候; ④正方形的邊長(zhǎng)與正方形的面積.
A.①②③B.①③④C.②③D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項(xiàng)為的正項(xiàng)數(shù)列滿足,.
(1)若,,,求的取值范圍;
(2)設(shè)數(shù)列是公比為的等比數(shù)列,為數(shù)列前項(xiàng)的和.若,,求的取值范圍;
(3)若,,,()成等差數(shù)列,且,求正整數(shù)的最小值,以及取最小值時(shí)相應(yīng)數(shù)列,,,的公差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)的父親決定今年夏天賣西瓜賺錢,根據(jù)去年6月份的數(shù)據(jù)統(tǒng)計(jì)連續(xù)五天內(nèi)每天所賣西瓜的個(gè)數(shù)與溫度之間的關(guān)系如下表:
溫度 | 32 | 33 | 35 | 37 | 38 |
西瓜個(gè)數(shù) | 20 | 22 | 24 | 30 | 34 |
(1)求這五天內(nèi)所賣西瓜個(gè)數(shù)的平均值和方差;
(2)求變量之間的線性回歸方程,并預(yù)測(cè)當(dāng)溫度為時(shí)所賣西瓜的個(gè)數(shù).
附:,(精確到).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知函數(shù)(,)的圖像關(guān)于直線x=對(duì)稱,最大值為3,且圖像上相鄰兩個(gè)最高點(diǎn)的距離為.
(1)求的最小正周期;
(2)求函數(shù)的解析式;
(3)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax- -5ln x,g(x)=x2-mx+4.
(1)若x=2是函數(shù)f(x)的極值點(diǎn),求a的值;
(2)當(dāng)a=2時(shí),若x1∈(0,1),x2∈[1,2],都有f(x1)≥g(x2)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:關(guān)于x的不等式ax>1(a>0,a≠1)的解集是{x|x<0},命題q:函數(shù)y=lg(ax2-x+a)的定義域?yàn)镽,如果p∨q為真命題,p∧q為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,是長(zhǎng)方形,平面平面,且是的中點(diǎn).
(Ⅰ) 求證:平面;
(Ⅱ) 求三棱錐的體積;
(Ⅲ)若點(diǎn)是線段上的一點(diǎn),且平面平面,求線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com