【題目】“五一”期間,為了滿足廣大人民的消費(fèi)需求,某共享單車(chē)公司欲投放一批共享單車(chē),單車(chē)總數(shù)不超過(guò)100輛,現(xiàn)有A,B兩種型號(hào)的單車(chē):其中A型車(chē)為運(yùn)動(dòng)型,成本為400元輛,騎行半小時(shí)需花費(fèi)元;B型車(chē)為輕便型,成本為2400元輛,騎行半小時(shí)需花費(fèi)1元若公司投入成本資金不能超過(guò)8萬(wàn)元,且投入的車(chē)輛平均每車(chē)每天會(huì)被騎行2次,每次不超過(guò)半小時(shí)不足半小時(shí)按半小時(shí)計(jì)算,問(wèn)公司如何投放兩種型號(hào)的單車(chē)才能使每天獲得的總收入最多,最多為多少元?
【答案】公司投放兩種型號(hào)的單車(chē)分別為80輛20輛才能使每天獲得的總收入最多,最多為120元.
【解析】
根據(jù)題意,設(shè)投放A型號(hào)單車(chē)x輛,B型號(hào)單車(chē)y輛,單車(chē)公司可獲得的總收入為Z,可得到約束條件的式子,及目標(biāo)函數(shù),畫(huà)出不等式組表示的平面區(qū)域,當(dāng)目標(biāo)函數(shù),經(jīng)過(guò)點(diǎn)時(shí),取得最大值,求解即可。
解:根據(jù)題意,設(shè)投放A型號(hào)單車(chē)x輛,B型號(hào)單車(chē)y輛,單車(chē)公司每天可獲得的總收入為Z,
則有,
即,
且,
畫(huà)出不等式組表示的平面區(qū)域,由,解得.
當(dāng)目標(biāo)函數(shù),經(jīng)過(guò)點(diǎn)時(shí),取得最大值為:.
答:公司投放兩種型號(hào)的單車(chē)分別為80輛20輛才能使每天獲得的總收入最多,最多為120元。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正整數(shù)1,2,3,,n,排成數(shù)表如表所示,即第一行3個(gè)數(shù),第二行6個(gè)數(shù),且后一行比前一行多3個(gè)數(shù),若第i行,第j列的數(shù)可用表示,則100可表示為______.
第1列 | 第2列 | 第3列 | 第4列 | 第5列 | 第6列 | 第7列 | 第8列 | ||
第1行 | 1 | 2 | 3 | ||||||
第2行 | 9 | 8 | 7 | 6 | 5 | 4 | |||
第3行 | 10/p> | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,是正三角形,四邊形是菱形,點(diǎn)是的中點(diǎn).
(I)求證:// 平面;
(II)若平面平面,, 求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于直線和點(diǎn)、,記,若,則稱(chēng)點(diǎn),被直線l分隔,若曲線C與直線l沒(méi)有公共點(diǎn),且曲線C上存在點(diǎn),被直線l分隔,則稱(chēng)直線l為曲線C的一條分隔線.
(1)求證:點(diǎn)、被直線分隔;
(2)若直線是曲線的分隔線,求實(shí)數(shù)的取值范圍;
(3)動(dòng)點(diǎn)M到點(diǎn)的距離與到y軸的距離之積為1,設(shè)點(diǎn)M的軌跡為E,求E的方程,并證明y軸為曲線E的分隔線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:()的左、右焦點(diǎn)分別為,過(guò)點(diǎn)的直線交于,兩點(diǎn),的周長(zhǎng)為, 的離心率
(Ⅰ)求的方程;
(Ⅱ)設(shè)點(diǎn),,過(guò)點(diǎn)作軸的垂線,試判斷直線與直線的交點(diǎn)是否恒在一條定直線上?若是,求該定直線的方程;否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù).
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),證明:對(duì)一切的,都有恒成立;
(Ⅲ)當(dāng)時(shí),函數(shù),有最小值,記的最小值為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若曲線上始終存在兩點(diǎn),使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓C:的離心率為,并且橢圓經(jīng)過(guò)點(diǎn)P(1,),直線l的方程為x=4.
(1)求橢圓的方程;
(2)已知橢圓內(nèi)一點(diǎn)E(1,0),過(guò)點(diǎn)E作一條斜率為k的直線與橢圓交于A,B兩點(diǎn),交直線l于點(diǎn)M,記PA,PB,PM的斜率分別為k1,k2,k3.問(wèn):是否存在常數(shù),使得k1+k2=k3?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) f(x)=ax+(1﹣a)lnx+(a∈R)
(Ⅰ)當(dāng)a=0時(shí),求 f(x)的極值;
(Ⅱ)當(dāng)a<0時(shí),求 f(x)的單調(diào)區(qū)間;
(Ⅲ)方程 f(x)=0的根的個(gè)數(shù)能否達(dá)到3,若能請(qǐng)求出此時(shí)a的范圍,若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com