【題目】已知橢圓的離心率為,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓過(guò)橢圓的上頂點(diǎn)作圓的兩條切線分別與橢圓相交于兩點(diǎn)(不同于點(diǎn)),直線的斜率分別為.

(1)求橢圓的方程;

(2)當(dāng)變化時(shí),①求的值;②試問(wèn)直線是否過(guò)某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說(shuō)明理由.

【答案】(1);(2)見(jiàn)解析.

【解析】試題分析:(1)由題設(shè)知, , ,又,解得,由此可得求橢圓的方程2,則有,化簡(jiǎn)得,對(duì)于直線,同理有,于是是方程的兩實(shí)根,故,即可證明結(jié)果;②考慮到時(shí), 是橢圓的下頂點(diǎn), 趨近于橢圓的上頂點(diǎn),故若過(guò)定點(diǎn),則猜想定點(diǎn)在軸上.

,得,于是有,直線的斜率為,直線的方程為,令,得,即可證明直線過(guò)定點(diǎn).

試題解析:(1)由題設(shè)知, , ,又,

解得.

故所求橢圓的方程是.

2,則有,化簡(jiǎn)得,

對(duì)于直線,同理有,

于是是方程的兩實(shí)根,故.

考慮到時(shí), 是橢圓的下頂點(diǎn), 趨近于橢圓的上頂點(diǎn),故若過(guò)定點(diǎn),則猜想定點(diǎn)在軸上.

,得,于是有.

直線的斜率為,

直線的方程為,

,得,

故直線過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù))

(1)若,討論的單調(diào)性;

(2)若對(duì)任意的,都存在使得不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=x2﹣16x+q+3
(1)若函數(shù)在區(qū)間[﹣1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)問(wèn):是否存在常數(shù)q(0<q<10),使得當(dāng)x∈[q,10]時(shí),f(x)的最小值為﹣51?若存在,求出q的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(1)證明: ,直線都不是曲線的切線;

(2)若,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校的平面示意圖為如下圖五邊形區(qū)域,其中三角形區(qū)域為生活區(qū),四邊形區(qū)域為教學(xué)區(qū), 為學(xué)校的主要道路(不考慮寬度). .

(1)求道路的長(zhǎng)度;(2)求生活區(qū)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信紅包是一款可以實(shí)現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機(jī)應(yīng)用.某網(wǎng)絡(luò)運(yùn)營(yíng)商對(duì)甲、乙兩個(gè)品牌各5種型號(hào)的手機(jī)在相同環(huán)境下?lián)尩降募t包個(gè)數(shù)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):

手機(jī)品牌 型號(hào)

I

II

III

IV

V

甲品牌(個(gè))

4

3

8

6

12

乙品牌(乙)

5

7

9

4

3

手機(jī)品牌 紅包個(gè)數(shù)

優(yōu)

非優(yōu)

合計(jì)

甲品牌(個(gè))

乙品牌(個(gè))

合計(jì)

(1)如果搶到紅包個(gè)數(shù)超過(guò)5個(gè)的手機(jī)型號(hào)為“優(yōu)”,否則為“非優(yōu)”,請(qǐng)完成上述2×2列聯(lián)表,據(jù)此判斷是否有85%的把握認(rèn)為搶到的紅包個(gè)數(shù)與手機(jī)品牌有關(guān)?

(2)如果不考慮其他因素,要從甲品牌的5種型號(hào)中選出3種型號(hào)的手機(jī)進(jìn)行大規(guī)模宣傳銷售.

①求在型號(hào)I被選中的條件下,型號(hào)II也被選中的概率;

②以表示選中的手機(jī)型號(hào)中搶到的紅包超過(guò)5個(gè)的型號(hào)種數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓過(guò)橢圓的上頂點(diǎn)作圓的兩條切線分別與橢圓相交于兩點(diǎn)(不同于點(diǎn)),直線的斜率分別為.

(1)求橢圓的方程;

(2)當(dāng)變化時(shí),①求的值;②試問(wèn)直線是否過(guò)某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P(x,y)到兩條坐標(biāo)軸的距離之和等于它到點(diǎn)(1,1)的距離,記點(diǎn)P的軌跡為曲線W,給出下列四個(gè)結(jié)論: ①曲線W關(guān)于原點(diǎn)對(duì)稱;
②曲線W關(guān)于直線y=x對(duì)稱;
③曲線W與x軸非負(fù)半軸,y軸非負(fù)半軸圍成的封閉圖形的面積小于
④曲線W上的點(diǎn)到原點(diǎn)距離的最小值為2﹣
其中,所有正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y2=2px(p>0)的焦點(diǎn)為F,已知A,B為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠AFB=120°,過(guò)弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則 的最大值為(
A.2
B.
C.1
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案