【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對應(yīng)值如表:
x | ﹣ | ||||||
y | ﹣1 | 1 | 3 | 1 | ﹣1 | 1 | 3 |
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個解析式;
(2)根據(jù)(1)的結(jié)果:
( i)當(dāng)x∈[0, ]時,方程f(3x)=m恰有兩個不同的解,求實數(shù)m的取值范圍;
( ii)若α,β是銳角三角形的兩個內(nèi)角,試比較f(sinα)與f(cosβ)的大。
【答案】
(1)解:設(shè)f(x)的最小正周期為T,則由表格可得T= ﹣(﹣ )=2π= ,得ω=1,
再根據(jù) ,解得 ,
再根據(jù)五點法作圖,可得令ω +φ= ,即 +φ= ,解得φ=﹣ ,
∴f(x)=2sin(x﹣ )+1.
(2)解:( i)f(3x)=2sin(3x﹣ )+1,令t=3x﹣ ,∵x∈[0, ],∴t∈[﹣ , ],
如圖,s=sint 在[﹣ , ]上有兩個不同的解,則s∈[ ,1),
∴方程 f(3x)=2sin(3x﹣ )+1=2s+1=m在x∈[0, ]時恰好有兩個不同的解,則m∈[ +1,3),
即實數(shù)m的取值范圍是[ +1,3).
( ii)由 得 ,
∴f(x)在 上單調(diào)遞增,故在[0,1]上單調(diào)遞增.
∵α、β是銳角三角形的兩個內(nèi)角,∴α+β> , >α> ﹣β,
∴sinα>sin( ﹣β)=cosβ,且sinα,cosβ∈[0,1],于是f(sinα)>f(cosβ).
【解析】(1)由函數(shù)的最值求出A、B,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.(2)( i)由題意可得y=2sin(3x﹣ )+1的圖象和直線y=m在[0, ]上恰好有兩個不同的交點,數(shù)形結(jié)合求得m的范圍;( ii)由條件可得f(x)在 上單調(diào)遞增,故在[0,1]上單調(diào)遞增,且α、β是銳角三角形的兩個內(nèi)角,α+β> ,即 >α> ﹣β,由此可得f(sinα)與f(cosβ)的大小關(guān)系.
【考點精析】認真審題,首先需要了解五點法作函數(shù)y=Asin(ωx+φ)的圖象(描點法及其特例—五點作圖法(正、余弦曲線),三點二線作圖法(正、余切曲線)).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉辦校園足球賽,組委會為了做好服務(wù)工作,招募了12名男志愿者和10名女志愿者,調(diào)查發(fā)現(xiàn)男女志愿者中分別有8人和4人喜歡看足球比賽,其余不喜歡
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜歡看足球比賽 | 不喜歡看足球比賽 | 總計 | |
男 | |||
女 | |||
總計 |
(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.10的前提下認為性別與喜歡看足球比賽有關(guān)?
(3)從女志愿者中抽取2人參加某場足球比賽服務(wù)工作,若其中喜歡看足球比賽的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
附:參考公式:K2= ,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k0) | 0.4 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓上的一個動點,弦分別過左右焦點,且當(dāng)線段的中點在軸上時, .
(1)求該橢圓的離心率;(2)設(shè),試判斷是否為定值?若是定值,求出該定值,并給出證明;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點E為AB的中點.
(1)求證:BD1∥平面A1DE;
(2)求直線A1E與平面AD1E所成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解一個英語教改實驗班的情況,舉行了一次測試,將該班30位學(xué)生的英語成績進行統(tǒng)計,得圖示頻率分布直方圖,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求出該班學(xué)生英語成績的眾數(shù),平均數(shù)及中位數(shù);
(2)從成績低于80分的學(xué)生中隨機抽取2人,規(guī)定抽到的學(xué)生成績在[50,60)的記1績點分,在[60,80)的記2績點分,設(shè)抽取2人的總績點分為ξ,求ξ的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnax﹣ (a≠0).
(1)求此函數(shù)的單調(diào)區(qū)間及最值;
(2)求證:對于任意正整數(shù)n,均有1+ + …+ ≥ln (e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分為16分)設(shè)A,B分別為橢圓的左、右頂點,橢圓的長軸長為,且點在該橢圓上.
(1)求橢圓的方程;
(2)設(shè)為直線上不同于點的任意一點,若直線與橢圓相交于異于的點,證明:△為鈍角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠利用隨機數(shù)表對生產(chǎn)的700個零件進行抽樣測試,先將700個零件進行編號001,002,…,699,700.從中抽取70個樣本,如圖提供隨機數(shù)表的第4行到第6行,若從表中第5行第6列開始向右讀取數(shù)據(jù),則得到的第5個樣本編號是( )
A.607
B.328
C.253
D.007
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com