【題目】某同學在上學路上要經(jīng)過A、B、C三個帶有紅綠燈的路口.已知他在A、B、C三個路口遇到紅燈的概率依次是 、 ,遇到紅燈時停留的時間依次是40秒、20秒、80秒,且在各路口是否遇到紅燈是相互獨立的.
(1)求這名同學在上學路上在第三個路口首次遇到紅燈的概率;,
(2)求這名同學在上學路上因遇到紅燈停留的總時間.

【答案】
(1)解:設這名同學在上學路上到第三個路口時首次遇到紅燈為事件A,

因為事件A等于事件“這名同學在第一和第二個路口沒有遇到紅燈,在第三個路口遇到紅燈”,

所以事件A的概率為P(A)=(1﹣ )(1﹣ )× =


(2)解:記“這名同學在上學路上因遇到紅燈停留的總時間”為ξ,

由題意,可得ξ可能取值為0,40,20,80,60,100,120,140(單位:秒);…

∴即ξ的分布列是:

P(ξ=0)=(1﹣ )×(1﹣ )×(1﹣ )=

P(ξ=40)= ×(1﹣ )×(1﹣ )= ;

P(ξ=20)=(1﹣ )× ×(1﹣ )=

P(ξ=80)=(1﹣ )×(1﹣ )× = ;

P(ξ=60)= × ×(1﹣ )=

P(ξ=100)=(1﹣ )× × = ;

P(ξ=120)= ×(1﹣ )× = ;

P(ξ=140)= × × =

所以Eξ=40× +20× +80× +60× +100× +120× +140× =

答:這名同學在上學路上因遇到紅燈停留的總時間為


【解析】(1)根據(jù)概率的幾何概型可求出事件A的概率。(2)根據(jù)已知得到ξ可能取值,再利用幾何概型求出各個概率,列表可得。
【考點精析】解答此題的關(guān)鍵在于理解幾何概型的相關(guān)知識,掌握幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等,以及對離散型隨機變量及其分布列的理解,了解在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x2+ax+b)ex , 當b<1時,函數(shù)f(x)在(﹣∞,﹣2),(1,+∞)上均為增函數(shù),則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)證明:f(x)在(﹣1,+∞)上為增函數(shù);
(3)證明:方程f(x)=0沒有負數(shù)根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的流程圖,則輸出的x值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓E: =1(a>b>0)的左頂點為A(﹣2,0),離心率為 ,過點A的直線l與橢圓E交于另一點B,點C為y軸上的一點.

(1)求橢圓E的標準方程;
(2)若△ABC是以點C為直角頂點的等腰直角三角形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC的三個內(nèi)角分別為A,B,C.向量 共線. (Ⅰ)求角C的大小;
(Ⅱ)設角A,B,C的對邊分別是a,b,c,且滿足2acosC+c=2b,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(a2﹣3a+3)ax是指數(shù)函數(shù),
(1)求f(x)的表達式;
(2)判斷F(x)=f(x)﹣f(﹣x)的奇偶性,并加以證明
(3)解不等式:loga(1﹣x)>loga(x+2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為函數(shù)y=f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)圖象的一部分,其中點 是圖象的一個最高點,點 是與點P相鄰的圖象與x軸的一個交點.

(1)求函數(shù)f(x)的解析式;
(2)若將函數(shù)f(x)的圖象沿x軸向右平移 個單位,再把所得圖象上每一點的橫坐標都變?yōu)樵瓉淼? (縱坐標不變),得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商從外地水產(chǎn)養(yǎng)殖廠購進一批小龍蝦,并隨機抽取40只進行統(tǒng)計,按重量分類統(tǒng)計結(jié)果如圖:
(1)記事件A為:“從這批小龍蝦中任取一只,重量不超過35g的小龍蝦”,求P(A)的估計值;
(2)若購進這批小龍蝦100千克,試估計這批小龍蝦的數(shù)量;
(3)為適應市場需求,了解這批小龍蝦的口感,該經(jīng)銷商將這40只小龍蝦分成三個等級,如下表:

等級

一等品

二等品

三等品

重量(g)

[5,25)

[25,45)

[45,55]

按分層抽樣抽取10只,再隨機抽取3只品嘗,記X為抽到二等品的數(shù)量,求抽到二級品的期望.

查看答案和解析>>

同步練習冊答案