已知坐標平面上點與兩個定點的距離之比等于5.
(1)求點的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為,過點的直線被所截得的線段的長為8,求直線的方程
(1)點M的軌跡方程是(x-1)2+(y-1)2=25,軌跡是以(1,1)為圓心,以5為半徑的圓
(2)直線l的方程為x=-2,或5x-12y+46=0.
解析試題分析:解:(1)由題意,得=5.,化簡,得x2+y2-2x-2y-23=0.即(x-1)2+(y-1)2=25.∴點M的軌跡方程是(x-1)2+(y-1)2=25,軌跡是以(1,1)為圓心,以5為半徑的圓.
(2)當直線l的斜率不存在時,l:x=-2,此時所截得的線段的長為,∴l(xiāng):x=-2符合題意.當直線l的斜率存在時,設l的方程為y-3=k(x+2),即kx-y+2k+3=0,圓心到l的距離,由題意,得,解得.∴直線l的方程為.即5x-12y+46=0.綜上,直線l的方程為x=-2,或5x-12y+46=0.
考點:圓的方程
點評:解決的關鍵是根據(jù)直接法來得到點滿足的幾何關系,然后坐標化得到求解,并能結(jié)合直線與圓的位置關系來得到,屬于基礎題。
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓(a>b>0)的離心率為,以原點為圓心,橢圓短半軸長半徑的圓與直線y=x+ 相切.
(1)求橢圓的方程;
(2)設直線與橢圓在軸上方的一個交點為,是橢圓的右焦點,試探究以為
直徑的圓與以橢圓長軸為直徑的圓的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓C:+=1(a>b>0)的左、右焦點分別為F、F,A是橢圓C上的一點,AF⊥FF,O是坐標原點,OB垂直AF于B,且OF=3OB.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)求t∈(0,b),使得命題“設圓x+y=t上任意點M(x,y)處的切線交橢圓C于Q、Q兩點,那么OQ⊥OQ”成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線,點、分別為雙曲線的左、右焦點,動點在軸上方.
(1)若點的坐標為是雙曲線的一條漸近線上的點,求以、為焦點且經(jīng)過點的橢圓的方程;
(2)若∠,求△的外接圓的方程;
(3)若在給定直線上任取一點,從點向(2)中圓引一條切線,切點為. 問是否存在一個定點,恒有?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心在坐標原點,兩個焦點分別為,,點在橢圓 上,過點的直線與拋物線交于兩點,拋物線在點處的切線分別為,且與交于點.
(1) 求橢圓的方程;
(2) 是否存在滿足的點? 若存在,指出這樣的點有幾個(不必求出點的坐標); 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的方程為左、右焦點分別為F1、F2,焦距為4,點M是橢圓C上一點,滿足
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點P(0,2)分別作直線PA,PB交橢圓C于A,B兩點,設直線PA,PB的斜率分別為k1,k2,,求證:直線AB過定點,并求出直線AB的斜率k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于兩點,使得.
(1)求橢圓的方程;(2)求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線上任意一點到兩個定點,的距離之和為4.
(1)求曲線的方程;
(2)設過(0,-2)的直線與曲線交于兩點,且(為原點),求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com