【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)設(shè),當(dāng)函數(shù)的圖象有三個不同的交點時,求實數(shù)的取值范圍.

【答案】(1) 函數(shù)上單調(diào)遞增,上單調(diào)遞減.

(2)

【解析】

(1)對函數(shù)求導(dǎo),根據(jù)的不同取值,結(jié)合不等式,可以判斷出函數(shù)的單調(diào)性;

(2)由題意可知:,得.得,

設(shè),則有三個不同的根等價于函數(shù)存在三個不同的零點.對函數(shù)進行求導(dǎo),然后判斷出其單調(diào)性,結(jié)合零點存在原理,最后求出實數(shù)的取值范圍.

(1)的定義域是,

,

當(dāng)時.兩數(shù)上單調(diào)遞增;

當(dāng),,;令,.

故函數(shù)上單調(diào)遞增,上單洞遞破.

(2)由,得.得,

設(shè),則有三個不同的根等價于函數(shù)存在三個不同的零點.

,

當(dāng),,單調(diào)遞減,不可能有三個不同的零點,

當(dāng)有兩個零點,

,

開口向下,

當(dāng), ,函數(shù)上單調(diào)遞誡:

當(dāng)時.函數(shù)上單調(diào)遞增:

當(dāng)時.,函數(shù)上單調(diào)遞減.

因為,又,有,

所以

,

.則.

.則單調(diào)遞增.

,求得,

當(dāng)時,單調(diào)遞減,.,

顯然在上單調(diào)遞增,

.

由零點存在性定理知在區(qū)間上有一個根.設(shè)為,

.得.所以.所以的另一個零點,

故當(dāng),存在三個不同的零點.

故實數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地擬規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設(shè)計成半徑為1km的扇形,中心角).為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴建成正方形,其中點,分別在邊上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.

(1)要使觀賞區(qū)的年收入不低于5萬元,求的最大值;

(2)試問:當(dāng)為多少時,年總收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為.

(1)過點的直線與拋物線相交于兩點,若,求直線的方程;

(2)是拋物線上的兩點,點的縱坐標(biāo)分別為1,2,分別過點作傾斜角互補的兩條直線交拋物線于另外不同兩點,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)閱兵領(lǐng)導(dǎo)小組辦公室介紹,2019年國慶70周年閱兵有59個方()隊和聯(lián)合軍樂團,總規(guī)模約15萬人,是近幾次閱兵中規(guī)模最大的一次.其中,徒步方隊15個.為了保證閱兵式時隊列保持整齊,各個方隊對受閱隊員的身高也有著非常嚴(yán)格的限制,太高或太矮都不行.徒步方隊隊員,男性身高普遍在175cm185cm之間;女性身高普遍在163cm175cm之間,這是常規(guī)標(biāo)準(zhǔn).要求最為嚴(yán)格的三軍儀仗隊,其隊員的身高一般都在184cm190cm之間.經(jīng)過隨機調(diào)查某個閱兵陣營中女子100人,得到她們身高的直方圖,如圖,記C為事件:某一閱兵女子身高不低于169cm,根據(jù)直方圖得到P(C)的估計值為05

(1)求直方圖中a,b的值;

(2)估計這個陣營女子身高的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】垃圾種類可分為可回收垃圾、干垃圾、濕垃圾、有害垃圾等,為調(diào)查中學(xué)生對垃圾分類的了解程度,某調(diào)查小組隨機從本市一中高一的名學(xué)生(其中女生人)中,采用分層抽樣的方法抽取名學(xué)生進行調(diào)查,已知抽取的名學(xué)生中有男生人、

(1)求值及抽到的女生人數(shù);

(2)調(diào)查小組請這名學(xué)生指出生活中若干項常見垃圾的種類,把能準(zhǔn)確分類不少于項的稱為“比較了解”,少于三項的稱為“不太了解”,調(diào)查結(jié)果如下:

0

1

2

3

4

5

5項以上

男生(人)

4

22

34

18

16

10

6

女生(人)

0

15

20+m

20

16

9

m

,完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為學(xué)生對垃圾分類的了解程度與性別有關(guān)?

不太了解

比較了解

合計

男生

女生

合計

(3)在(2)條件下,從抽取的“比較了解”的學(xué)生中仍采用分層抽樣的方法抽取名.再從這名學(xué)生中隨機抽取人作義務(wù)講解員,求抽取的人中至少一名女生的概率.

參考數(shù)據(jù):

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,底面是邊長為6的正三角形,底面,且與底面所成的角為

1)求三棱錐的體積;

2)若的中點,求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有行數(shù)表如下:

第一行:

第二行:

第三行:

…… …… ……

行:

m行:

按照上述方式從第一行寫到第m行(寫下的第n個數(shù)記作)得到有窮數(shù)列,其前n項和為,若存在,則的最小值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連續(xù)投擲2粒大小相同,質(zhì)地均勻的骰子3次,則恰有2次點數(shù)之和不小于10的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著手機的發(fā)展,“微信”逐漸成為人們交流的一種形式.某機構(gòu)對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.

年齡

(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(1)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成

不贊成

合計

(2)若從年齡在[55,65)的被調(diào)查人中隨機選取2人進行追蹤調(diào)查,求2人中至少有1人不贊成“使用微信交流”的概率.

參考數(shù)據(jù):

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2,其中nabcd.

查看答案和解析>>

同步練習(xí)冊答案