【題目】已知函數(shù),曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為

(1) 求的值;

(2) 證明: .

【答案】(1);(2)見(jiàn)解析

【解析】分析:第一問(wèn)結(jié)合導(dǎo)數(shù)的幾何意義以及切點(diǎn)在切線(xiàn)上也在函數(shù)圖像上,從而建立關(guān)于的等量關(guān)系式,從而求得結(jié)果;第二問(wèn)可以有兩種方法,一是將不等式轉(zhuǎn)化,構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的最值,從而求得結(jié)果,二是利用中間量來(lái)完成,這樣利用不等式的傳遞性來(lái)完成,再者這種方法可以簡(jiǎn)化運(yùn)算.

詳解:(1)解:,由題意有,解得

(2)證明:(方法一)由(1)知,.設(shè)

則只需證明

,設(shè)

, 上單調(diào)遞增

,

,使得

且當(dāng)時(shí),,當(dāng)時(shí),

當(dāng)時(shí),,單調(diào)遞減

當(dāng)時(shí),,單調(diào)遞增

,由,得,

設(shè),

當(dāng)時(shí),,單調(diào)遞減,

,因此

(方法二)先證當(dāng)時(shí), ,即證

設(shè),,且

單調(diào)遞增,

單調(diào)遞增,則當(dāng)時(shí),

(也可直接分析 顯然成立)

再證

設(shè),則,令,得

且當(dāng)時(shí),,單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增.

,即

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線(xiàn)yk(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)有3個(gè)不同零點(diǎn),則實(shí)數(shù)a的取值范圍____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某公司舉行的年終慶典活動(dòng)中,主持人利用隨機(jī)抽獎(jiǎng)軟件進(jìn)行抽獎(jiǎng):由電腦隨機(jī)生成一張如圖所示的33表格,其中1格設(shè)獎(jiǎng)300元,4格各設(shè)獎(jiǎng)200元,其余4格各設(shè)獎(jiǎng)100元,點(diǎn)擊某一格即顯示相應(yīng)金額.某人在一張表中隨機(jī)不重復(fù)地點(diǎn)擊3格,記中獎(jiǎng)的總金額為X元.

1)求概率;

2)求的概率分布及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,側(cè)面底面ABCD,底面ABCD為直角梯形,,,,E,F分別為AD,PC的中點(diǎn).

求證:平面BEF;

,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形為矩形,直線(xiàn)與平面所成的角為,,.

(1)求證:直線(xiàn)平面;

(2)點(diǎn)在線(xiàn)段上,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中,為自然對(duì)數(shù)的底數(shù),).

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)證明:當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C:的離心率為,其右焦點(diǎn)到橢圓C外一點(diǎn)的距離為,不過(guò)原點(diǎn)O的直線(xiàn)l與橢圓C相交于A,B兩點(diǎn),且線(xiàn)段AB的長(zhǎng)度為2.

1求橢圓C的方程;

2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,設(shè),且,記;

(1)設(shè),其中,試求的單調(diào)區(qū)間;

(2)試判斷弦的斜率的大小關(guān)系,并證明;

(3)證明:當(dāng)時(shí),.

查看答案和解析>>

同步練習(xí)冊(cè)答案