【題目】在平面直角坐標系中,直線過點且與直線垂直,直線軸交于點,點與點關(guān)于軸對稱,動點滿足.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)過點的直線與軌跡相交于兩點,設(shè)點,直線的斜率分別為,問是否為定值?若是,求出該定值;若不是,請說明理由.

【答案】(1);(2).

【解析】

(Ⅰ)由已知設(shè)直線的方程為

因為點在直線上,所以,解得.

所以直線的方程為.

,解得,所以,故.

因為

由橢圓的定義可得,動點的軌跡是以為焦點的橢圓,長軸長為4.

所以,,

所以軌跡的方程為.

(Ⅱ)①當直線的斜率不存在時,由,解得.

不妨設(shè),,則.

②當直線的斜率存在時,設(shè)直線的方程為,

,消去,得,

依題意,直線與軌跡必相交于兩點,設(shè),

,

,,

所以

.

綜上可得,為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面立角坐標系中,過點的圓的圓心軸上,且與過原點傾斜角為的直線相切.

(1)求圓的標準方程;

(2)在直線上,過點作圓的切線、,切點分別為、,求經(jīng)過、、四點的圓所過的定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線方程,為焦點,為拋物線準線上一點,為線段與拋物線的交點,定義:.

(1)當時,求;

(2)證明:存在常數(shù),使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級學(xué)生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計

70

30

100

根據(jù)表中數(shù)據(jù),問是否有的把握認為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機抽取3人,求至多有1人喜歡甜品的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,點,直線,圓.

1)求的取值范圍,并求出圓心坐標;

2)有一動圓的半徑為,圓心在上,若動圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了紀念“一帶一路”倡議提出五周年,某城市舉辦了一場知識競賽,為了了解市民對“一帶一路”知識的掌握情況,從回收的有效答卷中按青年組和老年組各隨機抽取了40份答卷,發(fā)現(xiàn)成績都在內(nèi),現(xiàn)將成績按區(qū)間,,,,進行分組,繪制成如下的頻率分布直方圖.

青年組

中老年組

(1)利用直方圖估計青年組的中位數(shù)和老年組的平均數(shù);

(2)從青年組,的分數(shù)段中,按分層抽樣的方法隨機抽取5份答卷,再從中選出3份答卷對應(yīng)的市民參加政府組織的座談會,求選出的3位市民中有2位來自分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高考改革是教育體制改革中的重點領(lǐng)域和關(guān)鍵環(huán)節(jié),全社會極其關(guān)注.近年來,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目語文、數(shù)學(xué)、外語,“”指考生根據(jù)本人興趣特長和擬報考學(xué)校及專業(yè)的要求,從物理、化學(xué)、生物、歷史、政治、地理六科中選擇門作為選考科目,其中語、數(shù)、外三門課各占分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學(xué)生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體的,以此賦分分、分、分、分.為了讓學(xué)生們體驗“賦分制”計算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單科全班排名,每名學(xué)生選三科計算成績),已知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學(xué)成績(滿分分)莖葉圖如下圖所示,小明同學(xué)在這次考試中物理分,化學(xué)多分.

(1)求小明物理成績的最后得分;

(2)若小明的化學(xué)成績最后得分為分,求小明的原始成績的可能值;

(3)若小明必選物理,其他兩科在剩下的五科中任選,求小明此次考試選考科目包括化學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一列非零向量滿足:,.

1)寫出數(shù)列的通項公式;

2)求出向量的夾角,并將中所有與平行的向量取出來,按原來的順序排成一列,組成新的數(shù)列,,為坐標原點,求點列的坐標;

3)令),求的極限點位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖所示的空間幾何體,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2BE和平面ABC所成的角為.且點E在平面ABC上的射影落在的平分線上.

1)求證:DE//平面ABC;

2)求二面角E—BC—A的余弦;

3)求多面體ABCDE的體積.

查看答案和解析>>

同步練習(xí)冊答案