精英家教網 > 高中數學 > 題目詳情
過拋物線y=2x2的焦點的直線與拋物線交于A(x1,y1),B(x2,y2)則x1x2=( )
A.-2
B.
C.-4
D.
【答案】分析:拋物線y=2x2的標準方程是,它的焦點F(0,),設過焦點F(0,)的直線是,由,得,由此能得到
解答:解:∵拋物線y=2x2,
∴拋物線的標準方程是,它的焦點F(0,),
設過焦點F(0,)的直線是,
,得,
∵直線與拋物線交于A(x1,y1),B(x2,y2),

故選D.
點評:本題考查直線和拋物線的位置關系,是基礎題.解題時要認真審題,仔細解答,注意韋達定理的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個焦點為F1,F2,則這個橢圓上存在六個不同的點M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
③若過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點作它的一條漸近線的垂線,垂足為M,O為坐標原點,則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個圓恰有2條公切線.
其中正確命題的序號是
 
.(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1兩焦點F1,F2,則橢圓上存在六個不同點M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
③若過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點作它的一條漸近線的垂線,垂足為M,O為坐標原點,則|OM|=a;
④根據氣象記錄,知道荊門和襄陽兩地一年中雨天所占的概率分別為20%和18%,兩地同時下雨的概率為12%,則荊門為雨天時,襄陽也為雨天的概率是60%.
其中正確命題的序號是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•泰安二模)給出下列三個命題:
①若直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
②雙曲線C:
x2
16
-
y2
9
=-1
的離心率為
5
3
;
③若C1x2+y2+2x=0,⊙C2x2+y2+2y-1=0,則這兩圓恰有2條公切線;
④若直線l1:a2x-y+6=0與直線l2:4x-(a-3)+9-0互相垂直,則a=-1.
其中正確命題的序號是
②③
②③
.(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列四個命題:①若直線l過拋物線y=2x2的焦點,且與這條拋物線交于A、B兩點,則|AB|的最小值為2;②雙曲線C:
x2
16
-
y2
9
=-1
的離心率為
3
5
;③若⊙C1:x2+y2+2x=0⊙C2:x2+y2+2y-1=0,則這兩圓恰有2條公切線;④若直線l1:a2x-y+6=0與直線l2:4x-(a-3)y+9=9互相垂直,則a=-1.
其中正確命題的序號是
②③
②③
.(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

過拋物線y=2x2的焦點的直線與拋物線交于A(x1,y1),B(x2,y2)則x1x2=(  )

查看答案和解析>>

同步練習冊答案