【題目】已知函數(shù)的圖象在它們的交點處具有相同的切線.

1)求的解析式;

2)若函數(shù)有兩個極值點,且,求的取值范圍.

【答案】1;(2

【解析】

1)求得兩個函數(shù)的導數(shù),由公切線的斜率相同可得的方程;將切點代入兩個函數(shù),可得的方程;聯(lián)立兩個方程即可求得的值,進而得的解析式;

2)將的解析式代入并求得,由極值點定義可知,是方程的兩個不等實根,由韋達定理表示出,結(jié)合可得.代入中化簡,分離參數(shù)并構(gòu)造函數(shù),求得并令求得極值點,由極值點兩側(cè)符號判斷單調(diào)性,并求得最小值,代入端點值求得最大值,即可求得的取值范圍.

1)根據(jù)題意,函數(shù)

可知,

兩圖象在點處有相同的切線,

所以兩個函數(shù)切線的斜率相等,即,化簡得

代入兩個函數(shù)可得,

綜合上述兩式可解得,

所以.

2)函數(shù),定義域為,

,

因為為函數(shù)的兩個極值點,

所以,是方程的兩個不等實根,

由根與系數(shù)的關(guān)系知,,

又已知,所以,

式代入得

,

,

,令,解得

時,,單調(diào)遞減;

時,,單調(diào)遞增;

所以,

,

,

的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線定位法是通過測定待定點到至少三個已知點的兩個距離差所進行的一種無線電定位.通過船(待定點)接收到三個發(fā)射臺的電磁波的時間差計算出距離差,兩個距離差即可形成兩條位置雙曲線,兩者相交便可確定船位.我們來看一種簡單的特殊狀況;如圖所示,已知三個發(fā)射臺分別為,,且剛好三點共線,已知海里,海里,現(xiàn)以的中點為原點,所在直線為軸建系.現(xiàn)根據(jù)船接收到點與點發(fā)出的電磁波的時間差計算出距離差,得知船在雙曲線的左支上,若船上接到臺發(fā)射的電磁波比臺電磁波早(已知電磁波在空氣中的傳播速度約為,1海里),則點的坐標(單位:海里)為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,若函數(shù)6個零點(互不相同),則實數(shù)a的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,取相同長度單位建立極坐標系,直線的極坐標方程為.

(Ⅰ)求曲線和直線的直角坐標方程;

(Ⅱ)直線軸交點為,經(jīng)過點的直線與曲線交于,兩點,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的離心率為,以橢圓的上頂點為圓心作圓,

,圓與橢圓在第一象限交于點,在第二象限交于點.

(1)求橢圓的方程;

(2)求的最小值,并求出此時圓的方程;

(3)設點是橢圓上異于的一點,且直線分別與軸交于點為坐標原點,求證:

為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

在平面直角坐標系xOy中,曲線C的參數(shù)方程為a為參數(shù)),在以原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為.

1)求C的普通方程和l的傾斜角;

2)設點,lC交于A,B兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】各項均為非負整數(shù)的數(shù)列同時滿足下列條件:

;② ;③的因數(shù)().

(Ⅰ)當時,寫出數(shù)列的前五項;

(Ⅱ)若數(shù)列的前三項互不相等,且時, 為常數(shù),求的值;

(Ⅲ)求證:對任意正整數(shù),存在正整數(shù),使得時, 為常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的運動方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

步數(shù)

性別

0-2000

2001-5000

5001-8000

8001-10000

>10000

1

2

3

6

8

0

2

10

6

2

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

附:

(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關(guān)?

積極型

懈怠型

總計

總計

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點的直角坐標為為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標中,直線的極坐標方程為

(1)試求出動點的軌跡方程(用普通方程表示)

(2)設點對應的軌跡為曲線,若曲線上存在四個點到直線的距離為1,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案