已知(x-
1x
n的展開(kāi)式中所有二項(xiàng)式系數(shù)的和為512,則展開(kāi)式中x3項(xiàng)的系數(shù)為
 
分析:首先分析題目已知(x-
1
x
n的展開(kāi)式中二項(xiàng)式系數(shù)的和為512,求展開(kāi)式中x3項(xiàng)的系數(shù).因?yàn)橛啥?xiàng)式性質(zhì)可直接得到二項(xiàng)式系數(shù)和為2n,故可求出n的值,再列出二項(xiàng)式的通項(xiàng),求出x3項(xiàng)為第幾項(xiàng),代入通項(xiàng)求出系數(shù)即可得到答案.
解答:解:因?yàn)楦鶕?jù)二項(xiàng)式性質(zhì)(x-
1
x
n的展開(kāi)式中所有二項(xiàng)式系數(shù)和為2n
故由已知得2n=512  故n=9
又展開(kāi)式中二項(xiàng)式的通項(xiàng)為Tk=
C
9
k
xk(-
1
x
)
9-k
=(-1)9-kC9kx2k-9
故展開(kāi)式中x3項(xiàng)為2k-9=3,即k=6,則系數(shù)為(-1)9-3C93=-84
故答案為:-84.
點(diǎn)評(píng):此題主要考查二項(xiàng)式系數(shù)的性質(zhì)問(wèn)題,其中涉及到展開(kāi)式中二項(xiàng)式的通項(xiàng)的求法,此類(lèi)題目在高考中多以選擇填空的形式出現(xiàn),一般考查的都是比較簡(jiǎn)單的概念性問(wèn)題,同學(xué)們需要掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•青島一模)已知(x2+
1
x
n的二項(xiàng)展開(kāi)式的各項(xiàng)系數(shù)和為32,則二項(xiàng)展開(kāi)式中x的系數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x2+
1x
n的展開(kāi)式的各系數(shù)和為32,則展開(kāi)式中x的系數(shù)為
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知(x2+
1
x
n的二項(xiàng)展開(kāi)式的各項(xiàng)系數(shù)和為32,則二項(xiàng)展開(kāi)式中x的系數(shù)為( 。
A.5B.10C.20D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知(x2+
1
x
n的展開(kāi)式的各系數(shù)和為32,則展開(kāi)式中x的系數(shù)為1010.

查看答案和解析>>

同步練習(xí)冊(cè)答案