7.某市春節(jié)期間7家超市的廣告費(fèi)支出xi(萬元)和銷售額yi(萬元)數(shù)據(jù)如下:
超市ABCDEFG
廣告費(fèi)支出xi1246111319
銷售額yi19324044525354
(1)若用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程;
(2)用對數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程:$\widehaty=12lnx+22$,
經(jīng)計算得出線性回歸模型和對數(shù)模型的R2分別約為0.75和0.97,請用R2說明選擇哪個回歸模型更合適,并用此模型預(yù)測A超市廣告費(fèi)支出為8萬元時的銷售額.
參數(shù)數(shù)據(jù)及公式:$\overline x=8\;\;,\;\;\overline y=42$,$\sum_{i=1}^7{{x_i}{y_i}}=2794\;\;,\;\;\sum_{i=1}^7{{x_i}^2}=708$,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\;\;,\;\;\widehata=\overline y-\widehatb\overline x$,ln2≈0.7.

分析 (1)求出回歸系數(shù),可得y關(guān)于x的線性回歸方程;
(2)對數(shù)回歸模型更合適.當(dāng)x=8萬元時,預(yù)測A超市銷售額為47.2萬元.

解答 解:(1)$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{2794-7×8×42}{{708-7×{8^2}}}=1.7$,$\widehata=\overline y-\widehatb\overline x=28.4$
所以,y關(guān)于x的線性回歸方程是$\widehaty=1.7x+28.4$
(2)∵0.75<0.97,∴對數(shù)回歸模型更合適.
當(dāng)x=8萬元時,預(yù)測A超市銷售額為47.2萬元.

點(diǎn)評 本題考查線性回歸方程,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示,正八邊形A1A2A3A4A5A6A7A8的邊長為2,若P為該正八邊形邊上的動點(diǎn),則$\overrightarrow{{A_1}{A_3}}•\overrightarrow{{A_1}P}$的取值范圍為( 。
A.$[0,8+6\sqrt{2}]$B.$[-2\sqrt{2},8+6\sqrt{2}]$C.$[-8-6\sqrt{2},2\sqrt{2}]$D.$[-8-6\sqrt{2},8+6\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,角A,B,C所對的邊分別是a,b,c,若a2+b2=2c2,則角C的取值范圍是(  )
A.$({0,\frac{π}{3}}]$B.$({0,\frac{π}{3}})$C.$({0,\frac{π}{6}}]$D.$({0,\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0.
(1)求角B的大小;
(2)若sin(A-$\frac{π}{3}$)=$\frac{3}{5}$,求sin2C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.二項式(x-a)7的展開式中,含x4項的系數(shù)為-280,則${∫}_{a}^{2e}$$\frac{1}{x}$dx=(  )
A.ln2B.ln2+1C.1D.$\frac{{{e^2}-1}}{{4{e^2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,角A,B,C對應(yīng)邊分別為a,b,c,已知三個向量$\overrightarrow m=(a,cos\frac{A}{2})$,$\overrightarrow n=(b,cos\frac{B}{2})$,$\overrightarrow p=(c,cos\frac{C}{2})$共線,則△ABC形狀為( 。
A.等邊三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖所示,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中a>b>0,F(xiàn)1,F(xiàn)2分別為其左,右焦點(diǎn),點(diǎn)P是橢圓C上一點(diǎn),PO⊥F2M,且$\overrightarrow{{F_1}M}=λ\overrightarrow{MP}$.
(1)當(dāng)$a=2\sqrt{2}$,b=2,且PF2⊥F1F2時,求λ的值;
(2)若λ=2,試求橢圓C離心率e的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|x2-9>0},B={x|2<x≤5},則A∩B=( 。
A.(3,5]B.(-∞,-3)∪(5,+∞)C.(-∞,-3)∪[5,+∞)D.(-∞,2]∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)a>0且a≠1,b>0,若函數(shù)y=ax+b的大致圖象如圖所示,則函數(shù)y=logax-b的圖象為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案