【題目】有一大批產(chǎn)品,其驗收方案如下,先做第一次檢驗:從中任取8件,經(jīng)檢驗都為優(yōu)質(zhì)品時接受這批產(chǎn)品,若優(yōu)質(zhì)品數(shù)小于6件則拒收;否則做第二次檢驗,其做法是從產(chǎn)品中再另任取3件,逐一檢驗,若檢測過程中檢測出非優(yōu)質(zhì)品就要終止檢驗且拒收這批產(chǎn)品,否則繼續(xù)產(chǎn)品檢測,且僅當(dāng)這3件產(chǎn)品都為優(yōu)質(zhì)品時接受這批產(chǎn)品.若產(chǎn)品的優(yōu)質(zhì)品率為0.9.且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨(dú)立.
(1)記為第一次檢驗的8件產(chǎn)品中優(yōu)質(zhì)品的件數(shù),求的期望與方差;
(2)求這批產(chǎn)品被接受的概率;
(3)若第一次檢測費(fèi)用固定為1000元,第二次檢測費(fèi)用為每件產(chǎn)品100元,記為整個產(chǎn)品檢驗過程中的總費(fèi)用,求的分布列.
(附:,,,,)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為直角梯形,,,四邊形為矩形,平面平面,,,點為的中點,點為的中點.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記.
(1)求方程的實數(shù)根;
(2)設(shè),,均為正整數(shù),且為最簡根式,若存在,使得可唯一表示為的形式,試求橢圓的焦點坐標(biāo);
(3)已知,是否存在,使得成立,若存在,試求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中
①若空間向量,,則是的充要條件;
②若是的必要不充分條件,則實數(shù)的取值范圍為;
③已知,為兩個不同平面,,為兩條直線,,,,,則“”是“”的充要條件;
④已知向量為平面的法向量,為直線的方向向量,則是的充要條件.
其中正確命題的序號有( )
A.②③B.②④C.②③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(Ⅰ)當(dāng)為偶函數(shù)時,求函數(shù)的極值;
(Ⅱ)若函數(shù)在區(qū)間上有兩個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和極坐標(biāo)方程;
(2)若與相交于、兩點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點B(0,-2)和橢圓M:.直線l:y=kx+1與橢圓M交于不同兩點P,Q.
(Ⅰ)求橢圓M的離心率;
(Ⅱ)若,求△PBQ的面積;
(Ⅲ)設(shè)直線PB與橢圓M的另一個交點為C,當(dāng)C為PB中點時,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】條件
(1)條件:復(fù)數(shù),指明是的說明條件?若滿足條件,記,求
(2)若上問中,記時的在平面直角坐標(biāo)系的點存在過點的拋物線頂點在原點,對稱軸為坐標(biāo)軸,求拋物線的解析式。
(3)自(2)中點出發(fā)的一束光線經(jīng)拋物線上一點反射后沿平行于拋物線對稱軸方向射出,求:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】首項為O的無窮數(shù)列同時滿足下面兩個條件:
①;②
(1)請直接寫出的所有可能值;
(2)記,若對任意成立,求的通項公式;
(3)對于給定的正整數(shù),求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com