【題目】如圖,在三棱錐中,是等邊三角形,,,為三棱錐外一點(diǎn),且為等邊三角形.

證明:;

若平面平面,平面與平面所成銳二面角的余弦值為,求的長(zhǎng).

【答案】證明見(jiàn)解析;.

【解析】

的中點(diǎn),連接,證明平面,可得到結(jié)論;

為原點(diǎn),軸,軸,軸建立空間直角坐標(biāo)系,求出平面和平面的法向量,利用夾角公式求出二面角的余弦值,得出結(jié)論.

解:的中點(diǎn),連接,,

因?yàn)?/span>是等邊三角形,所以,

又因?yàn)?/span>,所以,

因?yàn)?/span>,所以平面,

因?yàn)?/span>平面,故

因?yàn)槠矫?/span>平面,

平面平面,

所以平面,

,,

故以為原點(diǎn),軸,軸,軸建立空間直角坐標(biāo)系,

的中點(diǎn),連接,

同理可證平面,,

設(shè)

,,,

所以,,

設(shè)平面的一個(gè)法向量為,

,

,則

因?yàn)槠矫?/span>的一個(gè)法向量為,

所以,

所以,,

所以

因?yàn)?/span>為三棱錐外一點(diǎn),

所以,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,過(guò)F的直線與拋物線交于AB兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),則下列命題中正確的個(gè)數(shù)為(

面積的最小值為4;

②以為直徑的圓與x軸相切;

③記,的斜率分別為,,,則

④過(guò)焦點(diǎn)Fy軸的垂線與直線,分別交于點(diǎn)MN,則以為直徑的圓恒過(guò)定點(diǎn).

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

⑴當(dāng)時(shí),求函數(shù)的極值;

⑵若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形和菱形所在的平面相互垂直,的中點(diǎn).

1)求證:平面;

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)橢圓的四個(gè)頂點(diǎn)與坐標(biāo)軸垂直的四條直線圍成的矩形是第一象限內(nèi)的點(diǎn))的面積為,且過(guò)橢圓的右焦點(diǎn)的傾斜角為的直線過(guò)點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程

2)若射線與橢圓的交點(diǎn)分別為.當(dāng)它們的斜率之積為時(shí),試問(wèn)的面積是否為定值?若為定值,求出此定值;若不為定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某村為了脫貧致富,引進(jìn)了兩種麻鴨品種,一種是旱養(yǎng)培育的品種,另一種是水養(yǎng)培育的品種.為了了解養(yǎng)殖兩種麻鴨的經(jīng)濟(jì)效果情況,從中隨機(jī)抽取500只麻鴨統(tǒng)計(jì)了它們一個(gè)季度的產(chǎn)蛋量(單位:個(gè)),制成了如圖的頻率分布直方圖,且已知麻鴨的產(chǎn)蛋量在的頻率為0.66

1)求的值;

2)已知本次產(chǎn)蛋量近似服從(其中近似為樣本平均數(shù),似為樣本方差).若本村約有10000只麻鴨,試估計(jì)產(chǎn)蛋量在110~120的麻鴨數(shù)量(以各組區(qū)間的中點(diǎn)值代表該組的取值).

3)若以正常產(chǎn)蛋90個(gè)為標(biāo)準(zhǔn),大于90個(gè)認(rèn)為是良種,小于90個(gè)認(rèn)為是次種.根據(jù)統(tǒng)計(jì)得出兩種培育方法的列聯(lián)表如下,請(qǐng)完成表格中的統(tǒng)計(jì)數(shù)據(jù),并判斷是否有99.5%的把握認(rèn)為產(chǎn)蛋量與培育方法有關(guān).

良種

次種

總計(jì)

旱養(yǎng)培育

160

260

水養(yǎng)培育

60

總計(jì)

340

500

附:,則,,

,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)剪紙是我國(guó)廣大勞動(dòng)人民在生產(chǎn)與生活實(shí)踐中創(chuàng)造出來(lái)的一種平面剪刻藝術(shù).民間剪紙藝術(shù)是我國(guó)優(yōu)秀的非物質(zhì)文化遺產(chǎn)之一,在千百年的發(fā)展過(guò)程中,積淀了豐厚的文化歷史,取得了卓越的藝術(shù)成就.20203月發(fā)行的郵票《中國(guó)剪紙(二)》共4枚,第一枚郵票《三娘教子》(如圖1)出自“孟母教子”的故事,講述了母親通過(guò)斷織等行為教育孩子努力上進(jìn),懂得感恩.圖2是某剪紙藝術(shù)家根據(jù)第一枚郵票用一張半徑為4個(gè)單位的圓形紙片裁剪而成的《三娘教子》剪紙.為了測(cè)算圖2中有關(guān)部分的面積,在圓形區(qū)域內(nèi)隨機(jī)投擲400個(gè)點(diǎn),其中落入圖案上的點(diǎn)有225個(gè),據(jù)此可估計(jì)剪去部分紙片的面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)若,當(dāng)時(shí),證明:;

2)若當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最大值為.

(1)若關(guān)于的方程的兩個(gè)實(shí)數(shù)根為,求證:;

(2)當(dāng)時(shí),證明函數(shù)在函數(shù)的最小零點(diǎn)處取得極小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案