【題目】 2013年春節(jié)前,有超過20萬名來自廣西、四川的外來務工人員選擇駕乘摩托車沿321國道返鄉(xiāng)過年,為防止摩托車駕駛?cè)藛T因長途疲勞駕駛而引發(fā)交通事故,肇慶市公安交警部門在321國道沿線設(shè)立了多個休息站,讓過往的摩托車駕駛?cè)藛T有一個停車休息的場所.交警小李在某休息站連續(xù)5天對進站休息的駕駛?cè)藛T每隔50輛摩托車就對其省籍詢問一次,詢問結(jié)果如圖所示:

1)交警小李對進站休息的駕駛?cè)藛T的省籍詢問采用的是什么抽樣方法?

2)用分層抽樣的方法對被詢問了省籍的駕駛?cè)藛T進行抽樣,若廣西籍的有5名,則四川籍的應抽取幾名?

【答案】1)系統(tǒng)抽樣方法.22.

【解析】

1)由系統(tǒng)抽樣的定義可判斷出小李對進站休息的駕駛?cè)藛T的省籍詢問采用的方法.

2)由圖求出詢問了省籍的駕駛?cè)藛T中廣西籍、四川籍的人數(shù)分別為100人,40人,則可求出抽樣比為,從而可求出抽取的四川籍的人數(shù).

解:(1)根據(jù)題意,因為有相同的間隔,符合系統(tǒng)抽樣的特點,所以交警小李對進站休息的駕駛?cè)藛T的省籍詢問采用的是系統(tǒng)抽樣方法.

2)從圖中可知,被詢問了省籍的駕駛?cè)藛T中廣西籍的有(),四川籍的有(),則抽樣比為 ,則.

即四川籍的應抽取2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)a為常數(shù),函數(shù)fx)=xlnx1)﹣ax2,給出以下結(jié)論:(1fx)存在唯一零點與a的取值無關(guān);(2)若a=e2,則fx)存在唯一零點;(3)若ae2,則fx)存在兩個零點.其中正確的個數(shù)是( )

A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3

)求數(shù)列{an}的通項公式;

)若數(shù)列{an}的前k項和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為迎接中華人民共和國成立周年,開展了以厲害了,我的國為主題的征文比賽,評選出一、二、三等獎和優(yōu)秀獎.校團委根據(jù)獲獎的結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖:

1)扇形統(tǒng)計圖中三等獎所在扇形的圓心角的度數(shù)是__________度;

2)請補全條形統(tǒng)計圖;

3)在此次征文比賽中,獲得一等獎的同學中有兩人來自初三年級.現(xiàn)要從獲得一等獎同學中隨機抽選兩人參加該校團委組織的征文比賽總結(jié)會,請用畫樹狀圖或列表法求選中的兩人剛好都來自初三年級的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在中,,點在邊上,連結(jié).

1)若,求的周長;

2)點上一點,連結(jié)于點.

①如圖2,若平分,求證:;

②如圖3,連結(jié)過點的延長線于點,且延長延長線于點,請直接寫出線段之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C:x2y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.

(1)求證:曲線C都表示圓,并且這些圓心都在同一條直線上;

(2)證明:曲線C過定點;

(3)若曲線Cx軸相切,k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從偶函數(shù)的定義出發(fā),證明函數(shù)是偶函數(shù)的充要條件是它的圖象關(guān)于軸對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了分析某個高三學生的學習狀態(tài),對其下一階段的學習提供指導性建議.現(xiàn)對他前7次考試的數(shù)學成績、物理成績進行分析.下面是該生7次考試的成績.

數(shù)學

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

(1)他的數(shù)學成績與物理成績哪個更穩(wěn)定?請給出你的證明;

(2)已知該生的物理成績與數(shù)學成績是線性相關(guān)的,若該生的物理成績達到115分,請你估計他的數(shù)學成績大約是多少?并請你根據(jù)物理成績與數(shù)學成績的相關(guān)性,給出該生在學習數(shù)學、物理上的合理建議.

參考公式:方差公式:,其中為樣本平均數(shù).,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)對任意x,yR,總有f(x)f(y)f(xy),且當x>0時,f(x)<0,f(1)=-.

(1)求證:f(x)R上的單調(diào)減函數(shù).

(2)f(x)[3,3]上的最小值.

查看答案和解析>>

同步練習冊答案