【題目】 2013年春節(jié)前,有超過20萬名來自廣西、四川的外來務工人員選擇駕乘摩托車沿321國道返鄉(xiāng)過年,為防止摩托車駕駛?cè)藛T因長途疲勞駕駛而引發(fā)交通事故,肇慶市公安交警部門在321國道沿線設(shè)立了多個休息站,讓過往的摩托車駕駛?cè)藛T有一個停車休息的場所.交警小李在某休息站連續(xù)5天對進站休息的駕駛?cè)藛T每隔50輛摩托車就對其省籍詢問一次,詢問結(jié)果如圖所示:
(1)交警小李對進站休息的駕駛?cè)藛T的省籍詢問采用的是什么抽樣方法?
(2)用分層抽樣的方法對被詢問了省籍的駕駛?cè)藛T進行抽樣,若廣西籍的有5名,則四川籍的應抽取幾名?
【答案】(1)系統(tǒng)抽樣方法.(2)2名.
【解析】
(1)由系統(tǒng)抽樣的定義可判斷出小李對進站休息的駕駛?cè)藛T的省籍詢問采用的方法.
(2)由圖求出詢問了省籍的駕駛?cè)藛T中廣西籍、四川籍的人數(shù)分別為100人,40人,則可求出抽樣比為,從而可求出抽取的四川籍的人數(shù).
解:(1)根據(jù)題意,因為有相同的間隔,符合系統(tǒng)抽樣的特點,所以交警小李對進站休息的駕駛?cè)藛T的省籍詢問采用的是系統(tǒng)抽樣方法.
(2)從圖中可知,被詢問了省籍的駕駛?cè)藛T中廣西籍的有(人),四川籍的有(人),則抽樣比為 ,則.
即四川籍的應抽取2名.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)a為常數(shù),函數(shù)f(x)=x(lnx﹣1)﹣ax2,給出以下結(jié)論:(1)f(x)存在唯一零點與a的取值無關(guān);(2)若a=e﹣2,則f(x)存在唯一零點;(3)若a<e﹣2,則f(x)存在兩個零點.其中正確的個數(shù)是( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{an}的前k項和Sk=﹣35,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為迎接中華人民共和國成立周年,開展了以“厲害了,我的國”為主題的征文比賽,評選出一、二、三等獎和優(yōu)秀獎.校團委根據(jù)獲獎的結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖:
(1)扇形統(tǒng)計圖中三等獎所在扇形的圓心角的度數(shù)是__________度;
(2)請補全條形統(tǒng)計圖;
(3)在此次征文比賽中,獲得“一等獎”的同學中有兩人來自初三年級.現(xiàn)要從獲得“一等獎”同學中隨機抽選兩人參加該校團委組織的征文比賽總結(jié)會,請用畫樹狀圖或列表法求選中的兩人剛好都來自初三年級的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在中,,點在邊上,連結(jié).
(1)若,求的周長;
(2)點是上一點,連結(jié)交于點.
①如圖2,若平分,求證:;
②如圖3,連結(jié)過點作交的延長線于點,且延長交延長線于點,請直接寫出線段之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.
(1)求證:曲線C都表示圓,并且這些圓心都在同一條直線上;
(2)證明:曲線C過定點;
(3)若曲線C與x軸相切,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了分析某個高三學生的學習狀態(tài),對其下一階段的學習提供指導性建議.現(xiàn)對他前7次考試的數(shù)學成績、物理成績進行分析.下面是該生7次考試的成績.
數(shù)學 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(1)他的數(shù)學成績與物理成績哪個更穩(wěn)定?請給出你的證明;
(2)已知該生的物理成績與數(shù)學成績是線性相關(guān)的,若該生的物理成績達到115分,請你估計他的數(shù)學成績大約是多少?并請你根據(jù)物理成績與數(shù)學成績的相關(guān)性,給出該生在學習數(shù)學、物理上的合理建議.
參考公式:方差公式:,其中為樣本平均數(shù).,。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)對任意x,y∈R,總有f(x)+f(y)=f(x+y),且當x>0時,f(x)<0,f(1)=-.
(1)求證:f(x)是R上的單調(diào)減函數(shù).
(2)求f(x)在[-3,3]上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com