在2014年清明節(jié)期間,高速公路車輛較多,某調(diào)查公司在服務區(qū)從七座以下小型汽車中,按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法,抽取40名駕駛員進行調(diào)查,將他們在某段高速公路上的車速(km/h)分成6段:(60,65),[65,70),[70,75),[80,85),[85,90)后得到如圖的頻率分布直方圖.
(1)該公司在調(diào)查取樣中,用到的是什么抽樣方法?
(2)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值.
(3)若從車速在[60,70)的車輛中任取2輛,求抽出的2輛車中速度在[60,65)和[65,70)中各1輛的概率.
考點:古典概型及其概率計算公式,系統(tǒng)抽樣方法,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(1)這個抽樣是按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調(diào)查,是一個具有相同間隔的抽樣,并且總體的個數(shù)比較多,這是一個系統(tǒng)抽樣;
(2)選出直方圖中最高的矩形求出其底邊的中點即為眾數(shù);求出從左邊開始小矩形的面積和為0.5對應的橫軸的左邊即為中位數(shù);利用各個小矩形的面積乘以對應矩形的底邊的中點的和為數(shù)據(jù)的平均數(shù).
(3)從圖中可知,車速在[60,65)的車輛數(shù)和車速在[65,70)的車輛數(shù).從車速在(60,70)的車輛中任抽取2輛,設車速在[60,65)的車輛設為a,b,車速在[65,70)的車輛設為c,d,e,f,列出各自的基本事件數(shù),從而求出相應的概率即可.
解答: 解:(1)由題意知這個抽樣是按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調(diào)查,是一個具有相同間隔的抽樣,并且總體的個數(shù)比較多,這是一個系統(tǒng)抽樣.
故調(diào)查公司在采樣中,用到的是系統(tǒng)抽樣,(2分)
(2)眾數(shù)的估計值為最高的矩形的中點,即眾數(shù)的估計值等于77.5    (4分)
設圖中虛線所對應的車速為x,則中位數(shù)的估計值為:
0.01×5+0.02×5+0.04×5+0.06×(x-75)=0.5,
解得x=77.5,即中位數(shù)的估計值為77.5                (6分)
(3)從圖中可知,車速在[60,65)的車輛數(shù)為:m1=0.01×5×40=2(輛),(7分)
車速在[65,70)的車輛數(shù)為:m2=0.02×5×40=4(輛)      (8分)
設車速在[60,65)的車輛設為a,b,車速在[65,70)的車輛設為c,d,e,f,
則所有基本事件有:(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15種   (10分)
抽出的2輛車中速度在[60,65)和[65,70)中各1輛的事件有:(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),共8種   (12分)
所以,抽出的2輛車中速度在[60,65)和[65,70)中各1輛的概率P=
8
15
.(13分)
點評:解決頻率分布直方圖的有關特征數(shù)問題,利用眾數(shù)是最高矩形的底邊中點;中位數(shù)是左右兩邊的矩形的面積相等的底邊的值;平均數(shù)等于各個小矩形的面積乘以對應的矩形的底邊中點的和.此題把統(tǒng)計和概率結(jié)合在一起,比較新穎,也是高考的方向,應引起重視.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一個袋中有四個形狀大小完全相同的球,球的編號分別為1,2,3,4,先從袋中隨機抽取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n.求m+2≤n的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-lnx.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα•cosα=
1
8
,且
π
4
<α<
π
2
,則cosα-sinα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
b
滿足:|
a
|=1,|
b
|=2,
(1)若(
a
-2
b
)•(7
a
+3
b
)=-6,求向量
a
b
的夾角θ;
(2)若向量
a
b
的夾角為
π
3
,求|
a
-2
b
|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊經(jīng)過點P(-3,-
3
).
(Ⅰ)求sinα、cosα、tanα的值;
(Ⅱ)求
1+sinα
1-sinα
-
1-sinα
1+sinα
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2lnx-x2
(1)求函數(shù)f(x)在[
1
2
,2]的最大值;
(2)求證:
n
k=1
2n•ln(1+2-n)<n+
1
2
(n∈N*);
(3)若關于x的方程f(x)=-x2-2x-2+mex有唯一實數(shù)根,求實數(shù)m范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(cosωx,1),
n
=(
3
,sinωx)(ω>0),函數(shù)f(x)=
m
n
,且f(x)圖象上一個最高點為P(
π
12
,2),與P最近的一個最低點的坐標為(
12
,-2).
(1)求函數(shù)f(x)的解析式;
(2)設a為常數(shù),判斷方程f(x)=a在區(qū)間[0,
π
2
]上的解的個數(shù);
(3)在銳角△ABC中,若cos(
π
3
-B)=1,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=4sin(2x+
π
6
)-3,x∈[0,
π
2
]的最小值是
 

查看答案和解析>>

同步練習冊答案