已知點F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點,過F1且垂直于x軸的直線與雙曲線交于A,B兩點,若△ABF2是銳角三角形,則該雙曲線離心率的取值范圍是( 。
A.(1,
3
)
B.(
3
,2
2
)
C.(1+
2
,+∞)
D.(1,1+
2
)
在雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
中,
令x=-c 得,y=±
b2
a
,∴A,B兩點的縱坐標分別為±
b2
a

由△ABF2是銳角三角形知,∠AF2F1
π
4
,tan∠AF2F1=
b2
a
2c
<tan
π
4
=1,
c2-a2
2ac
<1,c2-2ac-a2<0,e2-2e-1<0,∴1-
2
<e<1+
2

又 e>1,∴1<e<1+
2

故選D.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•聊城一模)已知點F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點,P是橢圓C上的一點,且|F1F2|=2,∠F1PF2=
π
3
,△F1PF2
的面積為
3
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)點M的坐標為(
5
4
,0)
,過點F2且斜率為k的直線l與橢圓C相交于A,B兩點,對于任意的k∈R,
MA
MB
是否為定值?若是求出這個定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•青州市模擬)已知點F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,點P為橢圓上任意一點,P到焦點F2的距離的最大值為
2
+1
,且△PF1F2的最大面積為1.
( I)求橢圓C的方程.
( II)點M的坐標為(
5
4
,0)
,過點F2且斜率為k的直線L與橢圓C相交于A,B兩點.對于任意的k∈R,
MA
MB
是否為定值?若是求出這個定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,點P為橢圓上任意一點,P到焦點F2(1,0)的距離的最大值為
2
+1.
(1)求橢圓C的方程.
(2)點M的坐標為(
5
4
,0),過點F2且斜率為k的直線l與橢圓C相交于A,B兩點.對于任意的k∈R,
MA
MB
是否為定值?若是求出這個定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省期中題 題型:解答題

已知點F1,F(xiàn)2分別為橢圓C:(a>b>0)的左、右焦點,點P為橢圓上任意一點,P到焦點F2的距離的最大值為+1,且△PF1F2的最大面積為1。
(1)求橢圓C的方程。
(2)點M的坐標為,過點F2且斜率為k的直線L與橢圓C相交于A,B兩點。對于任意的k∈R,是否為定值?若是求出這個定值;若不是說明理由。 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省青島十九中高三(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知點F1,F(xiàn)2分別為橢圓C:的左右焦點,P是橢圓C上的一點,且的面積為
(Ⅰ)求橢圓C的方程;
(Ⅱ)點M的坐標為,過點F2且斜率為k的直線l與橢圓C相交于A,B兩點,對于任意的是否為定值?若是求出這個定值;若不是說明理由.

查看答案和解析>>

同步練習冊答案