【題目】已知函數(shù)fx)=2lnx

)若a1,求函數(shù)fx)的極值;

)若函數(shù)fx)在區(qū)間[1,2]上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍.

【答案】)見解析 (的取值范圍是.

【解析】

試題分析:(1)利用導(dǎo)數(shù)求單調(diào)性的步驟進(jìn)行即可;(2)函數(shù)fx)在區(qū)間[1,2]上為單調(diào)函數(shù),等價(jià)于在區(qū)間[1,2]上,f′x≥0f′x≤0恒成立,然后轉(zhuǎn)化為最值問(wèn)題來(lái)處理.

試題解析:(1)當(dāng)a1時(shí),fx)=3x2x2ln x,其定義域?yàn)椋?/span>0,+),

f′x)=4x3x0),

當(dāng)x∈0,1)時(shí),f′x)>0,故函數(shù)fx)在區(qū)間(0,1)上單調(diào)遞增;

當(dāng)x∈1,+)時(shí),f′x)<0,故函數(shù)fx)在區(qū)間(1,+)上單調(diào)遞減.

所以fx)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+).

2)由題易得f′x)=4xx0),

因?yàn)楹瘮?shù)fx)在區(qū)間[1,2]上為單調(diào)函數(shù),所以在區(qū)間[1,2]上,f′x≥0f′x≤0恒成立,

4x≥04x≤0x∈[1,2]時(shí)恒成立,即≥4x≤4x1≤x≤2),即maxmin,其中1≤x≤2

hx)=4x1≤x≤2),易知函數(shù)hx)在[1,2]上單調(diào)遞增,故h1≤hx≤h2).

所以≥h2)或≤h1),即≥4×2≤4×113,

解得a00a≤a≥1. 故a的取值范圍為(-,00,]∪[1,+).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第31屆夏季奧林匹克運(yùn)動(dòng)會(huì)于2016年8月5日至8月21日在巴西里約熱內(nèi)盧舉行.如表是近五屆奧運(yùn)會(huì)中國(guó)代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù)(單位:枚).

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

第26屆亞特蘭大

中國(guó)

38

51

32

28

16

俄羅斯

24

23

27

32

26

(1)根據(jù)表格中兩組數(shù)據(jù)在答題卡上完成近五屆奧運(yùn)會(huì)兩國(guó)代表團(tuán)獲得的金牌數(shù)的莖葉圖,并通過(guò)莖葉圖比較兩國(guó)代表團(tuán)獲得的金牌數(shù)的平均值及分散程度(不要求計(jì)算出具體數(shù)值,給出結(jié)論即可);

(2)如表是近五屆奧運(yùn)會(huì)中國(guó)代表團(tuán)獲得的金牌數(shù)之和(從第26屆算起,不包括之前已獲得的金牌數(shù))隨時(shí)間變化的數(shù)據(jù):

時(shí)間(屆)

26

27

28

29

30

金牌數(shù)之和(枚)

16

44

76

127

165

作出散點(diǎn)圖如圖:

由圖可以看出,金牌數(shù)之和與時(shí)間之間存在線性相關(guān)關(guān)系,請(qǐng)求出關(guān)于的線性回歸方程,并預(yù)測(cè)到第32屆奧運(yùn)會(huì)時(shí)中國(guó)代表團(tuán)獲得的金牌數(shù)之和為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,NPC的中點(diǎn).

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=1,AD= ,P矩形內(nèi)的一點(diǎn),且AP= ,若 ,(λ,μ∈R),則λ+ μ的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(Ⅰ)若a=﹣1,證明:函數(shù)f(x)是(0,+∞)上的減函數(shù);
(Ⅱ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x﹣y=0平行,求a的值;
(Ⅲ)若x>0,證明: (其中e=2.71828…是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),其中是不等于零的常數(shù)。

(1)寫出的定義域;

(2)求的單調(diào)遞增區(qū)間;

(3)已知函數(shù),定義:.其中,表示函數(shù)上的最小值,表示函數(shù)上的最大值.例如:,,則,,,當(dāng)時(shí),設(shè),不等式恒成立,求,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是(
A.﹣2
B.
C.
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)0<a<1,已知函數(shù)f(x)= ,若對(duì)任意b∈(0, ),函數(shù)g(x)=f(x)﹣b至少有兩個(gè)零點(diǎn),則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的多面體是由底面為的長(zhǎng)方體被截面所截面而得到的,其中

(1)求的長(zhǎng);

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案