【題目】已知拋物線: 的焦點為,過點的直線與相交于、兩點,點關于軸的對稱點為.
(Ⅰ)判斷點是否在直線上,并給出證明;
(Ⅱ)設,求的內切圓的方程.
科目:高中數學 來源: 題型:
【題目】某工廠每日生產某種產品噸,當日生產的產品當日銷售完畢,產品價格隨產品產量而變化,當時,每日的銷售額(單位:萬元)與當日的產量滿足,當日產量超過噸時,銷售額只能保持日產量噸時的狀況.已知日產量為噸時銷售額為萬元,日產量為噸時銷售額為萬元.
(1)把每日銷售額表示為日產量的函數;
(2)若每日的生產成本(單位:萬元),當日產量為多少噸時,每日的利潤可以達到最大?并求出最大值.(注:計算時取)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義的零點為的不動點,已知函數.
Ⅰ.當時,求函數的不動點;
Ⅱ.對于任意實數,函數恒有兩個相異的不動點,求實數的取值范圍;
Ⅲ.若函數只有一個零點且,求實數的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列4個命題:
①為了了解800名學生對學校某項教改試驗的意見,打算從中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔為40;
②四邊形為長方形,,,為中點,在長方形內隨機取一點,取得的點到的距離大于1的概率為;
③把函數的圖象向右平移個單位,可得到的圖象;
④已知回歸直線的斜率的估計值為,樣本點的中心為,則回歸直線方程為.
其中正確的命題有__________.(填上所有正確命題的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學生物興趣小組在學校生物園地種植了一批名貴樹苗,為了解樹苗生長情況,從這批樹苗中隨機測量了其中50棵樹苗的高度(單位:厘米),把這些高度列成了如下的頻率分布表:
組別 | ||||||
頻數 | 2 | 3 | 14 | 15 | 12 | 4 |
(1)在這批樹苗中任取一棵,其高度在85厘米以上的概率大約是多少?
(2)這批樹苗的平均高度大約是多少?
(3)為了進一步獲得研究資料,若從組中移出一棵樹苗,從組中移出兩棵樹苗進行試驗研究,則組中的樹苗和組中的樹苗同時被移出的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線的參數方程為(為參數).
(1)求曲線的普通方程;
(2)經過點(平面直角坐標系中點)作直線交曲線于兩點,若恰好為線段的三等分點,求直線的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,其中.
(1)若,求函數在區(qū)間上的取值范圍;
(2)若,且對任意的,都有,求實數的取值范圍;
(3)若對任意的,都有,求實數的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com