【題目】,已知,MBC的中點(diǎn).

(1),求向量與向量的夾角的余弦值;

(2)O是線段AM上任意一點(diǎn),,求的最小值;

(3)若點(diǎn)P是邊BC上的一點(diǎn),,求的最小值.

【答案】(1);2;3.

【解析】

1)利用向量夾角公式即可求出向量與向量的夾角的余弦值;

(2)根據(jù)已知條件求出線段AM的長(zhǎng),利用平行四邊形法則得到,,

表示成關(guān)于的二次函數(shù),求二次函數(shù)的最小值,即可求出結(jié)果;

3)先用數(shù)量積定義把轉(zhuǎn)化為的三角函數(shù)的表達(dá)式,再利用基本不等式求的最小值,從而得所求.

1)設(shè)向量與向量的夾角為,

由,

(),

=

,同理

,

向量與向量的夾角的余弦值.

2,設(shè),

,,

=

==

當(dāng)時(shí),的最小值是;

3)設(shè),

=

當(dāng)且僅當(dāng)時(shí),等號(hào)成立,

的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖已知四棱錐 P ABCD 的底面是邊長(zhǎng)為 6 的正方形,側(cè)棱 PA 的長(zhǎng)為 8,且垂直于底面,點(diǎn) M . N 分別是 DC .AB 的中點(diǎn)。

求:(1)異面直線 PM CN 所成角的正切值;

2)四棱錐 P ABCD 的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列項(xiàng)和為,且.

(1)證明數(shù)列是等比數(shù)列;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和極值;

(2)若不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍;

(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點(diǎn)A2,4

1)設(shè)圓Nx軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;

2)設(shè)平行于OA的直線l與圓M相交于BC兩點(diǎn),且BC=OA,求直線l的方程;

3)設(shè)點(diǎn)Tt,o)滿足:存在圓M上的兩點(diǎn)PQ,使得,求實(shí)數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】嫦娥四號(hào)月球探測(cè)器于2018年12月8日搭載長(zhǎng)征三號(hào)乙運(yùn)載火箭在西昌衛(wèi)星發(fā)射中心發(fā)射.12日下午4點(diǎn)43分左右,嫦娥四號(hào)順利進(jìn)入了以月球球心為一個(gè)焦點(diǎn)的橢圓形軌道,如圖中軌道③所示,其近月點(diǎn)與月球表面距離為公里,遠(yuǎn)月點(diǎn)與月球表面距離為公里.已知月球的直徑為公里,則該橢圓形軌道的離心率約為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知橢圓的左、右頂點(diǎn)分別為A,B,其離心率,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值是

(1)求橢圓的方程;

(2)若過橢圓右頂點(diǎn)的直線與橢圓的另一個(gè)交點(diǎn)為,線段的垂直平分線與軸交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)點(diǎn)與點(diǎn)的距離和它到直線的距離相等,記點(diǎn)的軌跡為曲線

1)求曲線的方程

2)設(shè)點(diǎn),動(dòng)點(diǎn)在曲線上運(yùn)動(dòng)時(shí),的最短距離為,求的值以及取到最小值時(shí)點(diǎn)的坐標(biāo)

3)設(shè)為曲線的任意兩點(diǎn),滿足為原點(diǎn)),試問直線是否恒過一個(gè)定點(diǎn)?如果是,求出定點(diǎn)坐標(biāo);如果不是,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足: , ,

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列的前項(xiàng)和為,且滿足,試確定的值,使得數(shù)列為等差數(shù)列;

(3)將數(shù)列中的部分項(xiàng)按原來順序構(gòu)成新數(shù)列,且,求證:存在無數(shù)個(gè)滿足條件的無窮等比數(shù)列

查看答案和解析>>

同步練習(xí)冊(cè)答案