((本題滿分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當(dāng)x=2時(shí),求證:BD⊥EG ;

(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為

的最大值;

(3)當(dāng)取得最大值時(shí),求二面角D-BF-C的余弦值.

 

【答案】

 

(1)略

(2)

(3)-

【解析】1)方法一:∵平面平面

AE⊥EF,∴AE⊥平面,AE⊥EF,AE⊥BE,

又BE⊥EF,故可如圖建立空間坐標(biāo)系E-xyz.

,又為BC的中點(diǎn),BC=4,

.則A(0,0,2),B(2,0,0),G(2,2,0),D(0,2,2),E(0,0,0),

(-2,2,2),(2,2,0),

(-2,2,2)(2,2,0)=0,∴.………………4分

 

方法二:作DH⊥EF于H,連BH,GH,

由平面平面知:DH⊥平面EBCF,

而EG平面EBCF,故EG⊥DH.

為平行四邊形,

,四邊形BGHE為正方形,∴EG⊥BH,BHDH=H,

故EG⊥平面DBH,

而BD平面DBH,∴ EG⊥BD.………4分

(或者直接利用三垂線定理得出結(jié)果)

 

(2)∵AD∥面BFC,

所以 =VA-BFC

,

時(shí)有最大值為. ………8分

(3)設(shè)平面DBF的法向量為,∵AE=2, B(2,0,0),D(0,2,2),

F(0,3,0),∴………10分

(-2,2,2),

,

,

,∴

面BCF一個(gè)法向量為,………12分

則cos<>=,………13分

由于所求二面角D-BF-C的平面角為鈍角,所以此二面角的余弦值為-.………14分

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點(diǎn)P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實(shí)數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時(shí)x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點(diǎn),且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值

(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分14分)

已知點(diǎn)是⊙上的任意一點(diǎn),過垂直軸于,動點(diǎn)滿足。

(1)求動點(diǎn)的軌跡方程; 

(2)已知點(diǎn),在動點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個(gè)長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習(xí)冊答案