【題目】已知在直角坐標(biāo)系 中,圓錐曲線 的參數(shù)方程為 為參數(shù)),定點(diǎn) , 是圓錐曲線 的左、右焦點(diǎn).
(1)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點(diǎn) 且平行于直線 的直線 的極坐標(biāo)方程;
(2)設(shè)(1)中直線 與圓錐曲線 交于 兩點(diǎn),求

【答案】
(1)解:圓錐曲線 的參數(shù)方程為 ( 為參數(shù)),所以普通方程為 : ,

直線極坐標(biāo)方程為:


(2)解:直線 的參數(shù)方程是 為參數(shù)), 代入橢圓方程得

的幾何意義可得


【解析】分析:本題主要考查了,解決問題的關(guān)鍵是(1)根據(jù) 將圓錐曲線 化為普通方程,從而可得 的坐標(biāo),根據(jù)斜率公式求直線 的斜率,因兩直線平行,直線 斜率與直線 的斜率相等,根據(jù)點(diǎn)斜式可求得直線 的方程.再根據(jù) 將其化為極坐標(biāo)方程.(2)將直線 改寫為過定點(diǎn) 的參數(shù)方程,將其代入曲線 的普通方程,可得關(guān)于參數(shù) 的一元二次方程,從而可得兩根之積 ,由 的幾何意義可得
【考點(diǎn)精析】通過靈活運(yùn)用橢圓的參數(shù)方程,掌握橢圓的參數(shù)方程可表示為即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:
(1)函數(shù)y=tanx在定義域內(nèi)單調(diào)遞增;
(2)若α,β是銳角△ABC的內(nèi)角,則sinα>cosβ;
(3)函數(shù)y=cos( x+ )的對稱軸x= +kπ,k∈Z;
(4)函數(shù)y=sin2x的圖象向左平移 個(gè)單位,得到y(tǒng)=sin(2x+ )的圖象.
其中正確的命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域?yàn)閇0,+∞),若關(guān)于x的不等式f(x)<c的解集為(m﹣3,m+3),則實(shí)數(shù)c的值為(
A.3
B.6
C.9
D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線焦點(diǎn)且傾斜角的直線與拋物線交于點(diǎn) 的面積為

(I)求拋物線的方程;

(II)設(shè)是直線上的一個(gè)動點(diǎn),過作拋物線的切線,切點(diǎn)分別為直線與直線軸的交點(diǎn)分別為點(diǎn)是以為圓心為半徑的圓上任意兩點(diǎn),求最大時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期為π,且f( )=

(1)求ω和φ的值;
(2)在給定坐標(biāo)系中作出函數(shù)f(x)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 的參數(shù)方程為 為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線 上的點(diǎn)按坐標(biāo)變換 得到曲線
(1)求曲線 的普通方程;
(2)若點(diǎn) 在曲線 上,點(diǎn) ,當(dāng)點(diǎn) 在曲線 上運(yùn)動時(shí),求 中點(diǎn) 的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A、B、C的對邊分別為a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},則S∩(UT)=(
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體ABCD﹣A1B1C1D1中,E、F分別為棱AA1、BB1的中點(diǎn),G為棱A1B1上的一點(diǎn),且A1G=λ(0≤λ≤1),則點(diǎn)G到平面D1EF的距離為(

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案