【題目】已知點(diǎn)P(x0 , y0)和點(diǎn)A(1,2)在直線(xiàn)l:3x+2y﹣8=0的異側(cè),則( )
A.3x0+2y0>0
B.3x0+2y0<0
C.3x0+2y0<8
D.3x0+2y0>8
【答案】D
【解析】解:將點(diǎn)的坐標(biāo)代入直線(xiàn)的方程,得: 3x0+2y0﹣8;3×1+2×2﹣8,
∵點(diǎn)P(x0 , y0)和點(diǎn)A(1,2)在直線(xiàn)l:3x+2y﹣8=0的異側(cè),
∴(3x0+2y0﹣8)(3×1+2×2﹣8)<0,
即:3x0+2y0﹣8>0
故選D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二元一次不等式(組)所表示的平面區(qū)域的相關(guān)知識(shí),掌握不等式組表示的平面區(qū)域是各個(gè)不等式所表示的平面區(qū)域的公共部.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知奇函數(shù)f(x)滿(mǎn)足對(duì)任意x∈R都有f(x+6)=f(x)+3成立,且f(1)=1,則f(2015)+f(2016)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)仔細(xì)觀(guān)察1,1,2,3,5,( ),13,運(yùn)用合情推理,可知寫(xiě)在括號(hào)里的數(shù)最可能是( )
A.8 B.9
C.10 D.11
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:“x∈[0,1],a≥2x”,命題p:“x∈R,x2+4x+a=0”,若命題“p∧q”是真命題,則實(shí)數(shù)a的取值范圍是( )
A.[1,4]
B.[2,4]
C.[2,+∞)
D.[4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=|x+1|+|x﹣2|的最小值為m.
(1)求m的值;
(2)若a,b,c是正實(shí)數(shù),且滿(mǎn)足a+b+c=m,求證:a2+b2+c2≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一批貨物需要用汽車(chē)從生產(chǎn)商所在城市甲運(yùn)至銷(xiāo)售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且通過(guò)這兩條公路所用的時(shí)間互不影響.據(jù)調(diào)查統(tǒng)計(jì),通過(guò)這兩條公路從城市甲到城市乙的200輛汽車(chē)所用時(shí)間的頻數(shù)分布如表:
所用的時(shí)間(天數(shù)) | 10 | 11 | 12 | 13 |
通過(guò)公路l的頻數(shù) | 20 | 40 | 20 | 20 |
通過(guò)公路2的頻數(shù) | 10 | 40 | 40 | 10 |
假設(shè)汽車(chē)A只能在約定日期(某月某日)的前11天出發(fā),汽車(chē)B只能在約定日期的前12天出發(fā)(將頻率視為概率).
(1)為了盡最大可能在各自允許的時(shí)間內(nèi)將貨物運(yùn)往城市乙,估計(jì)汽車(chē)A和汽車(chē)B應(yīng)如何選擇各自的路徑;
(2)若通過(guò)公路l、公路2的“一次性費(fèi)用”分別為3.2萬(wàn)元、1.6萬(wàn)元(其他費(fèi)用忽略不計(jì)),此項(xiàng)費(fèi)用由生產(chǎn)商承擔(dān).如果生產(chǎn)商恰能在約定日期當(dāng)天將貨物送到,則銷(xiāo)售商一次性支付給生產(chǎn)商40萬(wàn)元,若在約定日期前送到;每提前一天銷(xiāo)售商將多支付給生產(chǎn)商2萬(wàn)元;若在約定日期后送到,每遲到一天,生產(chǎn)商將支付給銷(xiāo)售商2萬(wàn)元.如果汽車(chē)A,B按(I)中所選路徑運(yùn)輸貨物,試比較哪輛汽車(chē)為生產(chǎn)商獲得的毛利潤(rùn)更大.
所以汽車(chē)A選擇公路1.汽車(chē)B選擇公路2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二面角α-l-β的大小為60°,m,n為異面直線(xiàn),且m⊥α,n⊥β,則m,n所成的角為( )
A. 30° B. 60° C. 90° D. 120°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高二年級(jí)共1000名學(xué)生,為了調(diào)查該年級(jí)學(xué)生視力情況,若用系統(tǒng)抽樣的方法抽取50個(gè)樣本,現(xiàn)將所有學(xué)生隨機(jī)地編號(hào)為000,001,002,…,999,若抽樣時(shí)確定每組都是抽出第2個(gè)數(shù),則第6組抽出的學(xué)生的編號(hào) .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com