【題目】ABC的內(nèi)角AB,C的對邊分別為ab,c.已知asinA+B)=csin.

1)求A

2)求sinBsinC的取值范圍;

3)若△ABC的面積為,周長為8,求a.

【答案】1A2)(0)(3a

【解析】

1)用誘導公式和正弦定理化邊為角,然后再由二倍角公式變形后可求得

2)由(1)可得,,把化為的函數(shù),由三角函數(shù)恒等變換化為一個三角函數(shù)形式,結合正弦函數(shù)性質(zhì)可得取值范圍;

3)由三角形面積可求得,由周長及余弦定理得的三個等式,消去可解得

1)△ABC中,asinA+B)=csin,

asinπC)=csin),

asinCccos,由正弦定理得sinAsinCsinCcos,

sinAcos,即2sincoscos

A∈(0,π),

cos0,

2sin1,即sin

,

解得A;

2)∵sinBsinCsinBsinBsinBcosBsin2Bsin2Bcos2Bsin2B,

又∵B∈(0,),

2B∈(),sin2B)∈(1]

sinBsinC∈(0,.

3)△ABC的面積為,周長為8,

bcsinAbc,

bc4

a+b+c8,

由余弦定理得:a2b2+c2bc,

由①②③組成方程組,可得:,

可得:(8a2a2+12,

解得:a.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(Ⅰ)求橢圓方程;

(Ⅱ)設為橢圓右頂點,過橢圓的右焦點的直線與橢圓交于,兩點(異于),直線分別交直線,兩點. 求證:,兩點的縱坐標之積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,DE分別為AB,BC的中點,點F在側棱B1B上,且.

求證:(1)直線DE平面A1C1F;

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是一個半圓柱與多面體構成的幾何體,平面與半圓柱的下底面共面,且, 為弧上(不與重合)的動點.

(1)證明: 平面;

(2)若四邊形為正方形,且, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中將底面為直角三角形且側棱垂直與底面的棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵與芻童的組合體中,

1)證明:直線平面;

2)已知,且三棱錐A-A1B1D1的體積,求該組合體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設min{m,n}表示m,n二者中較小的一個,已知函數(shù)f(x)=x2+8x+14,g(x)=(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,則a的最大值為

A.-4B.-3C.-2D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),是自然對數(shù)的底數(shù)).

1)討論的單調(diào)性;

2)當時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,長軸長為

)求橢圓的標準方程及離心率;

)過點的直線與橢圓交于兩點,若點滿足,求證:由點 構成的曲線關于直線對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知冪函數(shù)(0,+∞)上單調(diào)遞增,函數(shù)g(x)2xk.

(1)m的值;

(2)x[1,2)時,記f(x)g(x)的值域分別為集合A,B,設pxA,qxB,若pq成立的必要條件,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案