精英家教網 > 高中數學 > 題目詳情
設橢圓方程為=1(a>b>0),短軸的一個頂點B與兩焦點F1、F2組成的三角形的周長為4+2,且∠F1BF2=,求橢圓方程.
橢圓方程為+y2=1
由題意知
∴b2=a2-c2=1.
∴橢圓方程為+y2=1.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設橢圓的焦點分別為、,直線軸于點,且.
(1)試求橢圓的方程;
(2)過、分別作互相垂直的兩直線與橢圓分別交于、、四點(如圖所示),試求四邊形面積的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設橢圓=1的焦點為F1、F2,P是橢圓上任意一點,一條斜率為的直線交橢圓于A、B兩點,如果當a變化時,總可同時滿足:
①∠F1PF2的最大值為;
②直線l:ax+y+1=0平分線段AB.
求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在橢圓+=1上取三點,其橫坐標滿足x1+x3=2x2,三點順次與某一焦點連接的線段長是r1、r2、r3,則有(    )
A.r1、r2、r3成等差數列B.r1、r2、r3成等比數列
C.、成等差數列D.、、成等比數列

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在坐標軸上,分別根據下列條件求橢圓的標準方程.
(1)長軸、短軸長之比為2∶1,一條準線為x+4=0;
(2)離心率為,一條準線為y=3.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知不論k為何實數,直線y=kx+b與橢圓+=1總有公共點,則b的取值范?圍是(   )
A.(-5,5)B.[-5,5)C.[-5,5]D.[-5,+∞)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若線段AB的兩個端點A、B分別在x軸、y軸上滑動,|AB|=60,點M是AB上一點,且|AM|=36,則點M的軌跡方程是__________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


滿足,橢圓的離心率短軸長為2,0為坐標原點.
(1)求橢圓的方程;
(2)若直線AB過橢圓的焦點F(0,c),(c為半焦距),求直線AB的斜率k的值;
(3)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若焦點在x軸上的橢圓+=1的離心率,則m等于(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案