解答:解:f(x)=3-2|x|=
①當(dāng)x≥0時(shí),解f(x)≥g(x),得3-2x≥x
2-2x⇒0≤x≤
;
解f(x)<g(x),得3-2x<x
2-2x⇒x>
.
②當(dāng)x<0,解f(x)≥g(x),得3+2x≥x
2-2x⇒2-
≤x<0;
解f(x)<g(x),得3+2x<x
2-2x⇒x<2-
;
綜上所述,得
F(x)= | 3+2x (x<2-) | x2-2x (2-≤x≤) | 3-2x (x>) |
| |
分三種情況討論:
①當(dāng)x<2-
時(shí),函數(shù)為y=3+2x,在區(qū)間(-∞,2-
)是單調(diào)增函數(shù),故F(x)<F(2-
)=7-2
;
②當(dāng)2-
≤x≤
時(shí),函數(shù)為y=x
2-2x,在(2-
,1)是單調(diào)增函數(shù),在(1,
)是單調(diào)減函數(shù),
故-1≤F(x)≤2-
③當(dāng)x>
時(shí),函數(shù)為y=3-2x,在區(qū)間(
,+∞)是單調(diào)減函數(shù),故F(x)<F(
)=3-2
<0;
∴函數(shù)F(x)的值域?yàn)椋?∞,7-2
],可得函數(shù)F(x)最大值為F(2-
)=7-2
,沒有最小值.
故選B