精英家教網 > 高中數學 > 題目詳情
已知cos(
π
4
-x)=-
3
5
,則sin2x的值是( 。
分析:已知等式左邊利用兩角和與差的余弦函數公式及特殊角的三角函數值化簡求出sinx+cosx的值,兩邊平方即可求出sin2x的值.
解答:解:cos(
π
4
-x)=
2
2
(sinx+cosx)=-
3
5
,
兩邊平方得:
1
2
(sinx+cosx)2=
1
2
(1+sin2x)=
9
25
,
則sin2x=-
7
25

故選D
點評:此題考查了二倍角的正弦函數公式,兩角和與差的余弦函數公式,以及同角三角函數間的基本關系,熟練掌握公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知cos(
π
4
+x)=
3
5
,
17π
12
<x<
4
,求
sin2x+2sin2x
1-tanx
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知cos(
π
4
+x)=
4
5
,
17π
12
<x<
4
,求
sin2x-2sin2x
1-tanx
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知 cos(
π
4
+x)=
3
5
,
17π
12
<x<
4

(1)求sin2x的值.
(2)求 
sin2x+2sin2x
1-tanx
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知cos(
π
4
+x)=-
3
5
,且x是第三象限角,則
1+tanx
1-tanx
的值為(  )

查看答案和解析>>

同步練習冊答案