解答:解:(1)∵函數(shù)f(x)=(x
2+ax+b)e
x,∴f
′(x)=[x
2+(2+a)x+a+b]e
x,
又∵函數(shù)f(x)在x=1處取得極值,∴f
′(1)=0,∴1+2+a+a+b=0,∴b=-2a-3.
∴f
′(x)=[x
2+(a+2)x-a-3]e
x=(x-1)[x-(-a-3)]e
x,
①當(dāng)a=-4時(shí),f
′(x)=(x-1)
2e
x≥0,∴x=1不是函數(shù)的極值點(diǎn),因此a≠-4;
②當(dāng)a>-4時(shí),則-a-3<1,由f
′(x)>0得x>1或x<-a-3,由f
′(x)<0得-a-3<x<1,
∴函數(shù)f(x)在區(qū)間(-∞,-a-3),(1,+∞)上單調(diào)遞增,在區(qū)間(-a-3,1)上單調(diào)遞減.
③當(dāng)a<-4時(shí),則-a-3>1,由f
′(x)>0得x<1或x>-a-3,則-a-3<1,由f
′(x)<0得1<x<-a-3,
∴函數(shù)f(x)在區(qū)間(-∞,1),(-a-3,+∞)上單調(diào)遞增,在區(qū)間(1,-a-3)上單調(diào)遞減.
(2)當(dāng)a∈(0,1)時(shí),由(1)可知:函數(shù)f(x)在區(qū)間[0,1]上單調(diào)遞減,在區(qū)間(1,2]上單調(diào)遞增.
∴當(dāng)x∈[0,2]時(shí),函數(shù)f(x)在x=1處取得最小值,且f(x)
min=f(1)=(-a-2)e,
又f(0)=-2a-3,f(2)=e
2,∴f(2)>f(0),∴函數(shù)f(x)在x=2處取得最大值.
∴當(dāng)x
1,x
2∈[0,2]時(shí),|f(x
1)-f(x
2)|
max=f(x)
max-f(x)
min=f(2)-f(1)=e
2+(a+2)e.
∴對(duì)任意a∈(0,1)及x
1,x
2∈[0,2]總有|f(x
1)-f(x
2)|<[(m+2)a+m
2]e+e
2恒成立,
轉(zhuǎn)化為對(duì)任意a∈(0,1)及x
1,x
2∈[0,2]有
|f(x1)-f(x2)|max<[(m+2)a+m2]e+e
2恒成立,
即對(duì)任意a∈(0,1),[(m+2)a+m
2]e+e
2>e
2+(a+2)e恒成立,
即對(duì)任意a∈(0,1),(m+1)a+m
2-2>0恒成立,
令g(a)=(m+1)a+m
2-2,則有
,
解得
m≤或m≥,
所以滿足條件的m的取值范圍是:
m∈(-∞,]∪[,+∞).