【題目】誠信是立身之本,道德之基,我校學(xué)生會(huì)創(chuàng)設(shè)了“誠信水站”,既便于學(xué)生用水,又推進(jìn)誠信教育,并用“”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個(gè)周期)的誠信數(shù)據(jù)統(tǒng)計(jì):
第一周 | 第二周 | 第三周 | 第四周 | |
第一周期 | ||||
第二周期 | ||||
第三周期 |
(Ⅰ)計(jì)算表中十二周“水站誠信度”的平均數(shù);
(Ⅱ)若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個(gè)周期的前兩周中隨機(jī)抽取兩周進(jìn)行調(diào)研,計(jì)算恰有兩周是“高誠信度”的概率;
(Ⅲ)已知學(xué)生會(huì)分別在第一個(gè)周期的第四周末和第二個(gè)周期的第四周末各舉行了一次“以誠信為本”的主題教育活動(dòng),根據(jù)已有數(shù)據(jù),說明兩次主題教育活動(dòng)的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.
【答案】(Ⅰ);(Ⅱ);(Ⅲ)兩次活動(dòng)效果均好,理由詳見解析.
【解析】
(Ⅰ)結(jié)合表中的數(shù)據(jù),代入平均數(shù)公式求解即可;
(Ⅱ)設(shè)抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機(jī)抽取兩周,則有兩周為“高誠信度”事件為,利用列舉法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率計(jì)算公式求解即可;
(Ⅲ)結(jié)合表中的數(shù)據(jù)判斷即可.
(Ⅰ)表中十二周“水站誠信度”的平均數(shù)
.
(Ⅱ)設(shè)抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機(jī)抽取兩周均為“高誠信度”事件為,總的基本事件為共15種,
事件所包含的基本事件為共10種,
由古典概型概率計(jì)算公式可得,.
(Ⅲ)兩次活動(dòng)效果均好.
理由:活動(dòng)舉辦后,“水站誠信度'由和看出,后繼一周都有提升.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】松、竹、梅經(jīng)冬不衰,因此有“歲寒三友”之稱.在我國古代的詩詞和典籍中有很多與松和竹相關(guān)的描述和記載,宋代劉學(xué)箕的《念奴嬌·水軒沙岸》的“綴松黏竹,恍然如對三絕”描寫了大雪后松竹并生相依的美景;宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中亦有關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.現(xiàn)欲知幾日后,竹長超過松長一倍.為了解決這個(gè)新問題,設(shè)計(jì)下面的程序框圖,若輸入的,,則輸出的的值為( )
A.4B.5C.6D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有4名同學(xué)去參加校學(xué)生會(huì)活動(dòng),共有甲、乙兩類活動(dòng)可供參加者選擇,為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪類活動(dòng),擲出點(diǎn)數(shù)為1或2的人去參加甲類活動(dòng),擲出點(diǎn)數(shù)大于2的人去參加乙類活動(dòng).
(1)求這4個(gè)人中恰有2人去參加甲類活動(dòng)的概率;
(2)用,分別表示這4個(gè)人中去參加甲、乙兩類活動(dòng)的人數(shù).記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,為梯形,
(1)點(diǎn)在線段上,滿足平面,,求的值
(2)已知與的交點(diǎn)為,若,且平面平面,求二面角平面角的正切值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列中,,且,,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)記為數(shù)列的前項(xiàng)和,是否存在正整數(shù),使得?若存在,求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知對數(shù)函數(shù)過定點(diǎn)(其中),函數(shù)(其中為的導(dǎo)函數(shù),,為常數(shù))
(1)討論的單調(diào)性;
(2)若對有恒成立,且在()處的導(dǎo)數(shù)相等,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個(gè)班級均為 40 人,進(jìn)行一門考試后,按學(xué)生考試成績及格與不及格進(jìn)行統(tǒng)計(jì),甲班及格人數(shù)為 36 人,乙班及格人數(shù)為 24 人.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)22的列聯(lián)表;
(2)試判斷是否成績與班級是否有關(guān)?
參考公式:;
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有四個(gè)關(guān)于充要條件的命題:①“向量與非零向量共線”的充要條件是“有且只有一個(gè)實(shí)數(shù)使得;②“函數(shù)為偶函數(shù)”的充要條件是“”;③“兩個(gè)事件為互斥事件”是“這兩個(gè)事件為對立事件”的充要條件;④設(shè),則“"是“為偶函數(shù)”的充分不必要條件.其中,真命題的序號是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A過定點(diǎn)且與軸相切,點(diǎn)關(guān)于圓心的對稱點(diǎn)為,點(diǎn)的軌跡為.
(1)求曲線的方程;
(2)一條直線經(jīng)過點(diǎn),且交曲線于、兩點(diǎn),點(diǎn)為直線上的動(dòng)點(diǎn).
①求證:不可能是鈍角;
②是否存在這樣的點(diǎn),使得是正三角形?若存在,求點(diǎn)的坐標(biāo):否則,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com