已知長方形的四個(gè)頂點(diǎn)A(0,0)B(2,0),C(2,1)D(0,1).一質(zhì)點(diǎn)從AB的中點(diǎn)P0沿與AB夾角為q 的方向射到BC上的點(diǎn)P1后,依次反射到CA、DAAB上的點(diǎn)P2P1P4(入射角等于反射角).設(shè)P4的坐標(biāo)為(x4,0).若1x42,則tanq的取值范圍是( )

  A(1)   B(,)  C(,)   D(,)

答案:C
解析:

P1P2、P3、P4分別為對應(yīng)邊上的中點(diǎn),則x4=1,現(xiàn)令x4→1,則P1接近BC的中點(diǎn),此時(shí)tanq ,由題設(shè)1<x4<2,由題設(shè)1<x4<2知,tanq 可接近于,但不能等于


提示:

極限化的思維方法是高等數(shù)學(xué)的重要方法,在近幾年的一些高考選擇題中,若能合理運(yùn)用極限化的思維方法,則會事半功倍


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知長方形的四個(gè)頂點(diǎn)A(0,0)、B(2,0)、C(2,1)和D(0,1),一質(zhì)點(diǎn)從AB的中點(diǎn)P0沿與AB夾角為θ的方向射到BC上的點(diǎn)P1后,依次反射到CD、DA和AB上的點(diǎn)P2、P3和P4(入射角等于反射角).設(shè)P4的坐標(biāo)為(x4,0).若1<x4<2,求tanθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方形的四個(gè)頂點(diǎn)A(0,0),B(2,0),C(2,1)和D(0,1),一質(zhì)點(diǎn)從AB的中點(diǎn)P0沿與AB夾角為θ的方向射到BC上的點(diǎn)P1后,依次反射到CD、DA和AB上的點(diǎn)P2、P3和P4(入射角等于反射角)若P4與P0重合,則tgθ=( 。
A、
1
3
B、
2
5
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方形的四個(gè)頂點(diǎn)A(0,0)、B(2,0)、C(2,1)和D(0,1),一質(zhì)點(diǎn)從AB的中點(diǎn)P0沿與AB夾角為θ的方向射到BC上的點(diǎn)P1后,依次反射到CD、DAAB上的點(diǎn)P2、P3P4(入射角等于反射角).設(shè)P4的坐標(biāo)為(x4,0).若1<x4<2,求tanθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方形的四個(gè)頂點(diǎn)A(0,0),B(2,0),C(2,1)和D(0,1),一質(zhì)點(diǎn)從AB的中點(diǎn)沿與AB夾角為的方向射到BC上的點(diǎn)后,依次反射到CD、DA和AB上的點(diǎn)(入射角等于反射角),設(shè)坐標(biāo)為(),若,則tan的取值范圍是

(A)()   (B)()   (C)()   (D)(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三5月高考沖刺理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知長方形的四個(gè)頂點(diǎn)A(0,0),B(2,0),C(2,1)和D(0,1),一質(zhì)點(diǎn)從AB的中點(diǎn)沿與AB夾角為的方向射到BC上的點(diǎn)后,依次反射到CD、DA和AB上的點(diǎn)、(入射角等于反射角),設(shè)坐標(biāo)為(),若,則tan的取值范圍是(    )

A.()          B.()         C.()         D.(

 

查看答案和解析>>

同步練習(xí)冊答案