某校運動會開幕式上舉行升旗儀式,旗桿正好處在坡度15°的看臺的某一列的正前方,從這一列的第一排和最后一排測得旗桿頂部的仰角分別為60°和30°,第一排和最后一排的距離為10
6
米(如圖所示),旗桿底部與第一排在一個水平面上.若國歌長度約為50秒,升旗手應(yīng)以多大的速度勻速升旗?
考點:解三角形的實際應(yīng)用
專題:應(yīng)用題,解三角形
分析:根據(jù)題意可求得,∠BDC=45°,∠CBD=30°,CD=10
6
,然后利用正弦定理求得BC,最后在Rt△ABC中利用AB=BCsin 60°求得答案.
解答: 解:在△BCD中,∠BDC=45°,∠CBD=30°,CD=10
6

由正弦定理,得BC=
CDsin45°
sin30°
=20
3
;
在Rt△ABC中,AB=BCsin 60°=20
3
×
3
2
=30(米).
所以升旗速度v=
AB
t
=
30
50
=0.6(米/秒).
點評:本題主要考查了解三角形的實際應(yīng)用.此類問題的解決關(guān)鍵是建立數(shù)學(xué)模型,把實際問題轉(zhuǎn)化成數(shù)學(xué)問題,利用所學(xué)知識解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}為等差數(shù)列,且a5=14,a7=20,數(shù)列{bn}的前n項和為Sn,b1=
2
3
且3Sn=Sn-1+2(n≥2,n∈N).
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若cn=an•bn,n=1,2,3,…,Tn為數(shù)列{cn}的前n項和,Tn<m對n∈N*恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且(2c-b)cosA=acosB.
(1)求角A的值
(2)若a=
3
,則求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex
x
(e為自然對數(shù)的底)
(1)試確定函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[
1
2
,
3
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

巴西世界杯足球賽正在如火如荼進行.某人為了了解我校學(xué)生“通過電視收看世界杯”是否與性別有關(guān),從全校學(xué)生中隨機抽取30名學(xué)生進行了問卷調(diào)查,得到了如下列聯(lián)表:
男生女生合計
收看    10
不收看   8
合計  30
已知在這30名同學(xué)中隨機抽取1人,抽到“通過電視收看世界杯”的學(xué)生的概率是
8
15

(Ⅰ)請將上面的列聯(lián)表補充完整,并據(jù)此資料分析“通過電視收看世界杯”與性別是否有關(guān)?
(Ⅱ)若從這30名同學(xué)中的男同學(xué)中隨機抽取2人參加一活動,記“通過電視收看世界杯”的人數(shù)為X,求X的分布列和均值.
(參考公式:K2=
n(ad-bc)2
(a+b)(a+c)(c+d)(b+d)
,n=a+b+c+d)
P(K2>k0  0.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
12
cd
(c,d為實數(shù)).若矩陣A屬于特征值2,3的一個特征向量分別為
2
1
,
1
1
,求矩陣A的逆矩陣A-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,點D在BC邊上,AD=33,sin∠BAD=
5
13
,cos∠ADC=
3
5

(Ⅰ)求sin∠ABD的值;   
(Ⅱ)求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|2x+1|-|x-4|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若f(x)+3|x-4|>m對一切實數(shù)x均成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
b
的夾角為120°,且
a
b
=-1,則|
a
-
b
|的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案