【題目】英國統(tǒng)計(jì)學(xué)家E.H.辛普森1951年提出了著名的辛普森悖論,下面這個(gè)案例可以讓我們感受到這個(gè)悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結(jié)果如下表所示(單位:件):
法官甲 | 法官乙 | ||||||
終審結(jié)果 | 民事庭 | 行政庭 | 合計(jì) | 終審結(jié)果 | 民事庭 | 行政庭 | 合計(jì) |
維持 | 29 | 100 | 129 | 維持 | 90 | 20 | 110 |
推翻 | 3 | 18 | 21 | 推翻 | 10 | 5 | 15 |
合計(jì) | 32 | 118 | 150 | 合計(jì) | 100 | 25 | 125 |
記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,和,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,和,則下面說法正確的是
A. ,,B. ,,
C. ,,D. ,,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每到春夏交替時(shí)節(jié),雌性楊樹會(huì)以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)査了部分市民(問卷調(diào)査表如下表所示),并根據(jù)調(diào)查結(jié)果繪制了尚不完整的統(tǒng)計(jì)圖表(如下圖)
由兩個(gè)統(tǒng)計(jì)圖表可以求得,選擇D選項(xiàng)的人數(shù)和扇形統(tǒng)計(jì)圖中E的圓心角度數(shù)分別為( )
A.500,28.8°B.250,28.6°C.500,28.6°D.250,28.8°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一位發(fā)燒病人的體溫記錄折線圖,下列說法不正確的是( )
A.病人在5月13日12時(shí)的體溫是
B.病人體溫在5月14日0時(shí)到6時(shí)下降最快
C.從體溫上看,這個(gè)病人的病情在逐漸好轉(zhuǎn)
D.病人體溫在5月15日18時(shí)開始逐漸穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在上任意一點(diǎn)處的切線為,若過右焦點(diǎn)的直線交橢圓于兩點(diǎn),已知在點(diǎn)處切線相交于.
(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)①若過點(diǎn)且與直線垂直的直線(斜率存在且不為零)交橢圓于兩點(diǎn),證明為定值.
②四邊形的面積是否有最小值,若有請求出最小值;若沒有請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廠家在產(chǎn)品出廠前,需對產(chǎn)品做檢驗(yàn),廠家將一批產(chǎn)品發(fā)給商家時(shí),商家按合同規(guī)定也需隨機(jī)抽取一定數(shù)量的產(chǎn)品做檢驗(yàn),以決定是否接收這批產(chǎn)品.
(1)若廠家?guī)旆恐校ㄒ暈閿?shù)量足夠多)的每件產(chǎn)品合格的概率為 從中任意取出 3件進(jìn)行檢驗(yàn),求至少有 件是合格品的概率;
(2)若廠家發(fā)給商家 件產(chǎn)品,其中有不合格,按合同規(guī)定 商家從這 件產(chǎn)品中任取件,都進(jìn)行檢驗(yàn),只有 件都合格時(shí)才接收這批產(chǎn)品,否則拒收.求該商家可能檢驗(yàn)出的不合格產(chǎn)品的件數(shù)ξ的分布列,并求該商家拒收這批產(chǎn)品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)質(zhì)量檢驗(yàn)員為了檢測生產(chǎn)線上零件的情況,從生產(chǎn)線上隨機(jī)抽取了個(gè)零件進(jìn)行測量,根據(jù)所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,求這個(gè)零件尺寸的中位數(shù)(結(jié)果精確到);
(2)已知尺寸在上的零件為一等品,否則為二等品. 將這個(gè)零件尺寸的樣本頻率視為概率,從生產(chǎn)線上隨機(jī)抽取個(gè)零件,試估計(jì)所抽取的零件是二等品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線將矩形紙分為兩個(gè)直角梯形和,將梯形沿邊翻折,如圖2,在翻折的過程中(平面和平面不重合),下面說法正確的是
圖1 圖2
A.存在某一位置,使得平面
B.存在某一位置,使得平面
C.在翻折的過程中,平面恒成立
D.在翻折的過程中,平面恒成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)3,g(x)=alnx﹣2x(a∈R).
(1)討論g(x)的單調(diào)性;
(2)是否存在實(shí)數(shù)a,使不等式f(x)≥g(x)恒成立?如果存在,求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大約在20世紀(jì)30年代,世界上許多國家都流傳著這樣一個(gè)題目:任取一個(gè)正整數(shù),如果它是偶數(shù),則除以2;如果它是奇數(shù),則將它乘以3加1,這樣反復(fù)運(yùn)算,最后結(jié)果必然是1.這個(gè)題目在東方被稱為“角谷猜想”,世界一流的大數(shù)學(xué)家都被其卷入其中,用盡了各種方法,甚至動(dòng)用了最先進(jìn)的電子計(jì)算機(jī),驗(yàn)算到對700億以內(nèi)的自然數(shù)上述結(jié)論均為正確的,但卻給不出一般性的證明.例如取,則要想算出結(jié)果1,共需要經(jīng)過的運(yùn)算步數(shù)是( )
A.9B.10C.11D.12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com