Processing math: 100%
11.(1)設(shè)x≥1,y≥1,證明x+y+1xy1x+1y+xy;
(2)設(shè)a,b,c都是正數(shù),求證:12a+12b+12c1a+b+1b+c+1c+a

分析 (1)利用作差法,即可比較,
(2)根據(jù)基本不等式可得12a+12b21a+b,同理可得12a+12c21a+c,12b+12c21b+c,問題得以證明

解答 證明:(1)x+y+1xy-1x-1y-xy=x2y+xy2+1yxx2y2xy=-x1y1xy1xy,
∵x≥1,y≥1,
∴x-1≥0,y-1≥0,xy≥1,則差式為負(fù),
故明x+y+1xy1x+1y+xy;
(2)∵212a+12b2a+2b2,
12a+12b21a+b
同理12a+12c21a+c,12b+12c21b+c,當(dāng)且僅當(dāng)a=b=c時(shí)等號(hào)成立
12a+12b+12c1a+b+1b+c+1c+a

點(diǎn)評(píng) 本題考查了不等式的證明,作差和利用基本不等式時(shí)常用的方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=3sin2x+cos2x的圖象向右平移m(m>0)個(gè)單位,所得函數(shù)y=g(x)的圖象關(guān)于直線x=π2對(duì)稱,當(dāng)m取最小值時(shí),f(x)-g(x)的最大值是( �。�
A.2B.22C.3D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若至少存在一個(gè)x≥0,使得關(guān)于x的不等式x2≤4-|2x-m|成立,則實(shí)數(shù)m的取值范圍[-4,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.原點(diǎn)O關(guān)于直線x+y=2對(duì)稱點(diǎn)P的坐標(biāo)(2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=ax2+(b-8)x-a-ab(a≠0),當(dāng)x∈(-3,2)時(shí)f(x)>0,當(dāng)x∈(-∞,-3)∪(2,+∞)時(shí)f(x)<0,若不等式ax2+bx+c≤0在[1,4]上恒成立,則c∈( �。�
A.(-∞,-2]B.(-∞,-2512]C.(-∞,50]D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)A(0,2).若線段FA的中點(diǎn)B在拋物線上,則F到l的距離為2,|FB|=324

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)(x-2n展開式中,第二項(xiàng)與第四項(xiàng)的系數(shù)之比為1:2,則展開式中第三項(xiàng)的二次項(xiàng)系數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.十進(jìn)制數(shù)25轉(zhuǎn)化為二進(jìn)制數(shù)為  ( �。�
A.11001(2)B.10101(2)C.10011(2)D.11100(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若二次函數(shù)滿足f(x+1)-f(x)=2x+3,且f(0)=3.
(1)求f(x)的解析式;
(2)設(shè)g(x)=f(x)-ax,求g(x)在[0,2]的最小值g(a)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案