【題目】已知圓心在直線y=4x上,且與直線l:x+y﹣2=0相切于點P(1,1)
(Ⅰ)求圓的方程
(II)直線kx﹣y+3=0與該圓相交于A、B兩點,若點M在圓上,且有向量 (O為坐標原點),求實數(shù)k.
【答案】解:(Ⅰ)設(shè)圓的方程為(x﹣a)2+(y﹣4a)2=r2
因為直線相切,圓心到直線的距離d= ,
且圓心與切點連線與直線l垂直
則: 可得a=0,r= ,
所以圓的方程為:x2+y2=2.
(II)直線與圓聯(lián)立: ,
得:(1+k2)x2+6kx+7=0,
△=8k2﹣28>0,解得.k 或k ,
設(shè)A(x1,y1),B(x2,y2),
則: , ,
,
將M代入圓方程:(x +x2)2+(y1+y2)2=2,
,
求得k=
【解析】(Ⅰ)根據(jù)直線與圓相切的位置關(guān)系d= r 以及直線垂直斜率之積等于-1可求出a=0,r= ,進而得到圓的方程。
(II)由題意該直線與圓相交于A、B兩點聯(lián)立直線與圓的方程可得△>0求出k的取值范圍;再根據(jù)韋達定理得出與的表達式,代入圓的方程正理即得k的值,根據(jù)k的取值范圍兩個值全要。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若, 時,有成立.
(1)判斷在上的單調(diào)性,并證明;
(2)解不等式;
(3)若對所有的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家擴大內(nèi)需的政策,某廠家擬在2016年舉行某一產(chǎn)品的促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)x萬件與年促銷費用t(t≥0)萬元滿足x=4﹣ (k為常數(shù)).如果不搞促銷活動,則該產(chǎn)品的年銷量只能是1萬件.已知2016年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均生產(chǎn)投入成本的1.5倍(生產(chǎn)投入成本包括生產(chǎn)固定投入和生產(chǎn)再投入兩部分).
(1)求常數(shù)k,并將該廠家2016年該產(chǎn)品的利潤y萬元表示為年促銷費用t萬元的函數(shù);
(2)該廠家2016年的年促銷費用投入多少萬元時,廠家利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一條光線從點(﹣2,﹣3)射出,經(jīng)y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為( )
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標原點,橢圓C1: + =1(a>b>0)的左、右焦點分別為F1 , F2 , 離心率為e1;雙曲線C2: ﹣ =1的左、右焦點分別為F3 , F4 , 離心率為e2 , 已知e1e2= ,且|F2F4|= ﹣1.
(Ⅰ)求C1、C2的方程;
(Ⅱ)過F1作C1的不垂直于y軸的弦AB,M為AB的中點,當直線OM與C2交于P,Q兩點時,求四邊形APBQ面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知直線l1:4x﹣3y+6=0和直線l2:x=﹣1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一名大學(xué)生嘗試開家“網(wǎng)店”銷售一種學(xué)習(xí)用品,經(jīng)測算每售出1盒該產(chǎn)品可獲利30元,未售出的商品每盒虧損10元.根據(jù)統(tǒng)計資料,得到該商品的月需求量的頻率分布直方圖如圖所示,該同學(xué)為此購進180盒該產(chǎn)品,以x(單位:盒,100≤x≤200)表示一個月內(nèi)的市場需求量,y(單位:元)表示一個月內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(1)根據(jù)直方圖估計這個月內(nèi)市場需求量x的平均數(shù);
(2)將y表示為x的函數(shù);
(3)根據(jù)直方圖估計這個月利潤不少于3 800元的概率(用頻率近似概率).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某創(chuàng)業(yè)投資公司擬開發(fā)某種新能源產(chǎn)品,估計能獲得萬元到萬元的投資利益,現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不超過萬元,同時獎金不超過收益的.
()請分析函數(shù)是否符合公司要求的獎勵函數(shù)模型,并說明原因.
()若該公司采用函數(shù)模型作為獎勵函數(shù)模型,試確定最小正整數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com