【題目】函數(shù)的值域?yàn)?/span>_________________.
【答案】[-1,1)
【解析】
由題可得,由易得0<≤2,
故y∈[-1,1),所以函數(shù)的值域?yàn)?/span>[-1,1) .
【解題必備】(1)在高考中考查函數(shù)的定義域時(shí)多以客觀題形式呈現(xiàn),難度不大.求函數(shù)定義域的三種?碱(lèi)型及求解策略:①已知函數(shù)的解析式:構(gòu)建使解析式有意義的不等式(組)求解;②對(duì)于抽象函數(shù):若已知函數(shù)f(x)的定義域?yàn)?/span>[a,b],則復(fù)合函數(shù)f(g(x))的定義域由a≤g(x)≤b求出,若已知函數(shù)f(g(x))的定義域?yàn)?/span>[a,b],則f(x)的定義域?yàn)?/span>g(x)在x∈[a,b]時(shí)的值域;③對(duì)于實(shí)際問(wèn)題:既要使構(gòu)建的函數(shù)解析式有意義,又要考慮實(shí)際問(wèn)題的要求.
(2)求函數(shù)定義域的注意點(diǎn):①不要對(duì)解析式進(jìn)行化簡(jiǎn)變形,以免定義域變化;②當(dāng)一個(gè)函數(shù)由有限個(gè)基本初等函數(shù)的和、差、積、商的形式構(gòu)成時(shí),定義域一般是各個(gè)基本初等函數(shù)定義域的交集;③定義域是一個(gè)集合,要用集合或區(qū)間表示,若用區(qū)間表示,不能用“或”連接,而應(yīng)該用并集符號(hào)“∪”連接.
(3)求函數(shù)值域的基本方法:①觀察法,通過(guò)對(duì)函數(shù)解析式的簡(jiǎn)單變形,利用熟知的基本函數(shù)的值域,或利用函數(shù)圖象的“最高點(diǎn)”和“最低點(diǎn)”,觀察求得函數(shù)的值域;②利用常見(jiàn)函數(shù)的值域,一次函數(shù)的值域?yàn)?/span>,反比例函數(shù)的值域?yàn)?/span>,指數(shù)函數(shù)的值域?yàn)?/span>,對(duì)數(shù)函數(shù)的值域?yàn)?/span>,正、余弦函數(shù)的值域?yàn)?/span>,正切函數(shù)的值域?yàn)?/span>;③分離常數(shù)法,將形如(a≠0)的函數(shù)分離常數(shù),結(jié)合x的取值范圍確定函數(shù)的值域;④換元法,對(duì)某些無(wú)理函數(shù)或其他函數(shù),通過(guò)適當(dāng)?shù)膿Q元,把它們化為我們熟悉的函數(shù),再用有關(guān)方法求值域;⑤配方法,對(duì)二次函數(shù)型的解析式可以先進(jìn)行配方,在充分注意到自變量取值范圍的情況下,利用求二次函數(shù)的值域的方法求函數(shù)的值域;⑥數(shù)形結(jié)合法,作出函數(shù)圖象,找出自變量對(duì)應(yīng)的范圍或分析條件的幾何意義,在圖上找出值域;⑦單調(diào)性法(也可結(jié)合導(dǎo)數(shù)),函數(shù)單調(diào)性的變化是求最值和值域的依據(jù),根據(jù)函數(shù)的單調(diào)區(qū)間判斷其單調(diào)性,進(jìn)而求函數(shù)的最值和值域;⑧基本不等式法,利用基本不等式(a>0,b>0)求最值,注意應(yīng)用基本不等式的條件是“一正二定三相等”;⑨判別式法,將函數(shù)轉(zhuǎn)化為二次方程,利用Δ≥0,由此確定函數(shù)的值域,利用判別式求函數(shù)值的范圍,常用于一些“分式”函數(shù)、“無(wú)理”函數(shù)等,使用此法要特別注意自變量的取值范圍;⑩有界性法,充分利用三角函數(shù)或一些代數(shù)表達(dá)式的有界性,求出值域.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年“十一”期間,高速公路車(chē)輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車(chē)中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢(xún)問(wèn)調(diào)查,將他們?cè)谀扯胃咚俟返能?chē)速()分成六段: , , , , , ,后得到如圖的頻率分布直方圖.
(1)求這40輛小型車(chē)輛車(chē)速的眾數(shù)和中位數(shù)的估計(jì)值;
(2)若從車(chē)速在的車(chē)輛中任抽取2輛,求車(chē)速在的車(chē)輛恰有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)定義域?yàn)?/span>,且對(duì)任意實(shí)數(shù),有,則稱(chēng)為“形函數(shù)”,若函數(shù)定義域?yàn)?/span>,函數(shù)對(duì)任意恒成立,且對(duì)任意實(shí)數(shù),有,則稱(chēng)為“對(duì)數(shù)形函數(shù)” .
(1)試判斷函數(shù)是否為“形函數(shù)”,并說(shuō)明理由;
(2)若是“對(duì)數(shù)形函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)若是“形函數(shù)”,且滿(mǎn)足對(duì)任意,有,問(wèn)是否為“對(duì)數(shù)形函數(shù)”?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語(yǔ)文、數(shù)學(xué)和英語(yǔ)是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目,若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱(chēng)該學(xué)生的選考方案確定;否則,稱(chēng)該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估計(jì)該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?
(Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從選考方案確定的8位男生隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;
(Ⅲ)從選考方案確定的8名男生隨機(jī)選出2名,設(shè)隨機(jī)變量?jī)擅猩x考方案相同時(shí),兩名男生選考方案不同時(shí),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)列、、、、()依次為函數(shù)圖像上的點(diǎn),點(diǎn)列、、、()依次為軸正半軸上的點(diǎn),其中(),對(duì)于任意,點(diǎn)、、構(gòu)成一個(gè)頂角的頂點(diǎn)為的等腰三角形.
(1)證明:數(shù)列是等差數(shù)列;
(2)證明:為常數(shù),并求出數(shù)列的前項(xiàng)和;
(3)在上述等腰三角形中,是否存在直角三角形?若存在,求出值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】銷(xiāo)售甲、乙兩種商品所得利潤(rùn)分別是萬(wàn)元,它們與投入資金 萬(wàn)元的關(guān)系分別為,,(其中都為常數(shù)),函數(shù)對(duì)應(yīng)的曲線(xiàn)、如圖所示.
(1)求函數(shù)與的解析式;
(2)若該商場(chǎng)一共投資4萬(wàn)元經(jīng)銷(xiāo)甲、乙兩種商品,求該商場(chǎng)所獲利潤(rùn)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上為增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個(gè)不同的極值點(diǎn),記作,,且,證明:(為自然對(duì)數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)過(guò)后,某市教育局從全市高中生中抽去了100人,調(diào)查了他們的壓歲錢(qián)收入情況,按照金額(單位:百元)分成了以下幾組:,,,,,.統(tǒng)計(jì)結(jié)果如下表所示:
該市高中生壓歲錢(qián)收入可以認(rèn)為服從正態(tài)分布,用樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點(diǎn)值)作為的估計(jì)值.
(1)求樣本平均數(shù);
(2)求;
(3)某文化公司贊助了市教育局的這次社會(huì)調(diào)查活動(dòng),并針對(duì)該市的高中生制定了贈(zèng)送“讀書(shū)卡”的活動(dòng),贈(zèng)送方式為:壓歲錢(qián)低于的獲贈(zèng)兩次讀書(shū)卡,壓歲錢(qián)不低于的獲贈(zèng)一次讀書(shū)卡.已知每次贈(zèng)送的讀書(shū)卡張數(shù)及對(duì)應(yīng)的概率如下表所示:
現(xiàn)從該市高中生中隨機(jī)抽取一人,記(單位:張)為該名高中生獲贈(zèng)的讀書(shū)卡的張數(shù),求的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com