【題目】已知D為圓O:x2+y2=8上的動點(diǎn),過點(diǎn)D向x軸作垂線DN,垂足為N,T在線段DN上且滿足 .
(1)求動點(diǎn)T的軌跡方程;
(2)若M是直線l:x=﹣4上的任意一點(diǎn),以O(shè)M為直徑的圓K與圓O相交于P,Q兩點(diǎn),求證:直線PQ必過定點(diǎn)E,并求出點(diǎn)E的坐標(biāo);
(3)若(2)中直線PQ與動點(diǎn)T的軌跡交于G,H兩點(diǎn),且 ,求此時(shí)弦PQ的長度.
【答案】
(1)解:設(shè)T(x,y),則|DN|= |TN|,
∵D為圓O:x2+y2=8上的動點(diǎn),
∴x2+( y)2=8,
∵|DN|≠0,∴y≠0,
∴動點(diǎn)T的軌跡方程為 =1
(2)解:設(shè)M(﹣4,m),則圓K方程為x(x+4)+y(y﹣m)=0
與圓O:x2+y2=8聯(lián)立消去x2,y2得PQ的方程為4x﹣my+8=0,
令y=0,可得x=﹣2,得直線PQ過定點(diǎn)E(﹣2,0)
(3)解:設(shè)G(x1,y1),H(x2,y2),則 ,①
∵ ,∴(x1+2,y1)=3(﹣2﹣x2,﹣y2),即:x1=﹣8﹣3x2,y1=﹣3y2,
代入①解得:x2=﹣ ,y2=± (舍去正值),∴kPQ=1,所以PQ:x﹣y+2=0,
從而圓心O(0,0)到直線PQ的距離d= ,
∴PQ=2 =2
【解析】(1)利用代入法,求動點(diǎn)T的軌跡方程;(2)設(shè)M(﹣4,m),則圓K方程為x(x+4)+y(y﹣m)=0與圓O:x2+y2=8聯(lián)立消去x2 , y2得PQ的方程為4x﹣my+8=0,能夠證明直線PQ必過定點(diǎn)E,并求出點(diǎn)E的坐標(biāo);(3)設(shè)G(x1 , y1),H(x2 , y2),則 ,①,知(x1+2,y1)=3(﹣2﹣x2 , ﹣y2),結(jié)合向量求出PQ的方程,由此入手能夠求出弦PQ的長
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣2|+2x﹣3,記f(x)≤﹣1的解集為M.
(Ⅰ)求M;
(Ⅱ)當(dāng)x∈M時(shí),證明:x[f(x)]2﹣x2f(x)≤0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD為直角梯形,AD∥BC,AD⊥AB,AD=1,BC=2,E為CD上一點(diǎn),F(xiàn)為BE的中點(diǎn),且DE=1,EC=2,現(xiàn)將梯形沿BE折疊(如圖2),使平面BCE⊥ABED.
(1)求證:平面ACE⊥平面BCE;
(2)能否在邊AB上找到一點(diǎn)P(端點(diǎn)除外)使平面ACE與平面PCF所成角的余弦值為 ?若存在,試確定點(diǎn)P的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,平面區(qū)域D由所有滿足 (1≤λ≤a,1≤μ≤b)的點(diǎn)P構(gòu)成,其面積為8,則4a+b的最小值為( )
A.13
B.12
C.7
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于任意實(shí)數(shù)a,b,定義min{a,b}= ,定義在R上的偶函數(shù)f (x)滿足f (x+4)=f(x),且當(dāng)0≤x≤2時(shí),f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有兩個(gè)根,則m的取值范圍是( )
A.{﹣1,1}∪(﹣ln2,- )∪( ,ln2)
B.[﹣1,- )∪
C.{﹣1,1}∪(﹣ln2,- )∪( ,ln2)
D.(- ,- )∪( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)已知實(shí)數(shù)a,b滿足|a|<2,|b|<2,證明:2|a+b|<|4+ab|;
(2)已知a>0,求證: ﹣ ≥a+ ﹣2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C: =1(a>b>0),橢圓C短軸的一個(gè)端點(diǎn)與長軸的一個(gè)端點(diǎn)的連線與圓O:x2+y2= 相切,且拋物線y2=﹣4 x的準(zhǔn)線恰好過橢圓C的一個(gè)焦點(diǎn). (Ⅰ)求橢圓C的方程;
(Ⅱ)過圓O上任意一點(diǎn)P作圓的切線l與橢圓C交于A,B兩點(diǎn),連接PO并延長交圓O于點(diǎn)Q,求△ABQ面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中 中,曲線 的參數(shù)方程為 ( 為參數(shù)),以原點(diǎn) 為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線 的普通方程和極坐標(biāo)方程;
(2)若直線 與曲線 相交于點(diǎn) 兩點(diǎn),且 ,求證: 為定值,并求出這個(gè)定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com