(本小題14分) 已知函數(shù)f(x)=ax3+bx2+cx(a≠0)是定義在R上的奇函數(shù),且x=-1時(shí),函數(shù)取極值1。
(1)求a,b,c的值;
(2)若x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤2;
(3)求證:曲線y=f(x)上不存在兩個(gè)不同的點(diǎn)A,B,使過(guò)A, B兩點(diǎn)的切線都垂直于直線AB。
(1),b=0
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8a/f/24vaa2.png" style="vertical-align:middle;" />,那么可以運(yùn)用函數(shù)單調(diào)性放縮來(lái)得到解決問(wèn)題。
(3)對(duì)于探索性試題的分析,假設(shè)存在,然后根據(jù)過(guò)A,B兩點(diǎn)的切線平行,得到斜率相等,同時(shí)根據(jù)過(guò)A,B兩點(diǎn)的切線都垂直于直線AB
,則斜率之積為-1,得到方程,通過(guò)方程無(wú)解說(shuō)明假設(shè)不成立,進(jìn)而得到證明。
解析試題分析:(1)函數(shù)是定義在R上的奇函數(shù),
∴即對(duì)于恒成立,
∴b=0
∴
∵x=-1時(shí),函數(shù)取極值1,∴3a+c=0,-a-c=1
解得:
(2)
<0,∴
(3)設(shè)
∵過(guò)A,B兩點(diǎn)的切線平行,
∴可得
∵,∴,則
由于過(guò)A點(diǎn)的切線垂直于直線AB,
∴
∴∵△=-12<0
∴關(guān)于x1的方程無(wú)解。
∴曲線上不存在兩個(gè)不同的點(diǎn)A,B,過(guò)A,B兩點(diǎn)的切線都垂直于直線AB
考點(diǎn):本試題考查了導(dǎo)數(shù)的運(yùn)用。
點(diǎn)評(píng):運(yùn)用導(dǎo)數(shù)研究函數(shù)的問(wèn)題主要涉及到了函數(shù)的單調(diào)性和函數(shù)的極值以及最值問(wèn)題,那么同時(shí)要熟練的掌握導(dǎo)數(shù)的幾何意義表示切線方程。而對(duì)于不等式的恒成立問(wèn)題,一般將其轉(zhuǎn)換為分離參數(shù)的思想來(lái)求解不等式的成立,主要是通過(guò)最值來(lái)完成證明,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)已知是函數(shù)的一個(gè)極值點(diǎn).
(Ⅰ)求的值;
(Ⅱ)當(dāng),時(shí),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
⑴若是的極值點(diǎn),求實(shí)數(shù)值。
⑵若對(duì)都有成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
本小題滿(mǎn)分12分)設(shè)M是由滿(mǎn)足下列條件的函數(shù)f (x)構(gòu)成的集合:①方程f (x)一x=0有實(shí)根;②函數(shù)的導(dǎo)數(shù)滿(mǎn)足0<<1.
(1)若函數(shù)f(x)為集合M中的任意一個(gè)元素,證明:方程f(x)一x=0只有一個(gè)實(shí)根;
(2)判斷函數(shù)是否是集合M中的元素,并說(shuō)明理由;
(3)設(shè)函數(shù)f(x)為集合M中的任意一個(gè)元素,對(duì)于定義域中任意,
證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
已知函數(shù)
(1)判斷的單調(diào)性;
(2)記若函數(shù)有兩個(gè)零點(diǎn),求證
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題共14分)已知函數(shù)其中常數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),若函數(shù)有三個(gè)不同的零點(diǎn),求m的取值范圍;
(3)設(shè)定義在D上的函數(shù)在點(diǎn)處的切線方程為當(dāng)時(shí),若在D內(nèi)恒成立,則稱(chēng)P為函數(shù)的“類(lèi)對(duì)稱(chēng)點(diǎn)”,請(qǐng)你探究當(dāng)時(shí),函數(shù)是否存在“類(lèi)對(duì)稱(chēng)點(diǎn)”,若存在,請(qǐng)最少求出一個(gè)“類(lèi)對(duì)稱(chēng)點(diǎn)”的橫坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com