精英家教網 > 高中數學 > 題目詳情
已知正三棱錐P-ABC的底面邊長為4,側棱長為8,E,F分別是PB,PC上的點,求△AEF的周長最小值.
分析:根據給出的正三棱錐的側棱長和底面邊長知,兩條側棱的夾角為銳角,然后求出該銳角的三倍角的余弦值,使原圖形中的
△AEF的周長最小,就是求沿PA剪開再展開后A點與A點的最短距離,即直線距離,運用余弦定理可求解.
解答:解:沿三棱錐P-ABC的側棱PA剪開后再展開,如圖,

原圖中△AEF的周長最小,也就是展開圖中的AA,
在△PAB中,因為PA=PB=8,AB=4,
設∠APB=α,則cosα=
PA2+PB2-AB2
2PA•PB
=
82+82-42
2×8×8
=
7
8

∠APA=3α,
由cos3α=4cos3α-3cosα=4×(
7
8
)3-3×
7
8
=
7
128

在△APA中,由余弦定理得:
AA′2=PA2+PA′2-2PA•PAcos3α
=82+82-2×8×8×
7
128

=121.
所以,AA=11.
所以,△AEF的周長最小值為11.
點評:本題考查了棱錐的結構特征,考查了距離最短問題,該類問題通常比喻“螞蟻爬行問題”,解答的方法是沿一定的棱或母線把多面體或旋轉體剪開,然后再展開,求兩點間的直線距離問題,是中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知正三棱錐P-ABC的側棱長為2,底面邊長為1,平行四邊形EFGH的四個頂點分別在棱AB、BC、CP、PA上,則
1
EF
+
1
FG
的最小值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知正三棱錐P-ABC主視圖如圖所示,其中△PAB中,AB=PC=2cm,則這個正三棱錐的左視圖的面積為
 
cm2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正三棱錐P-ABC的底面邊長為6,側棱長為
13
.有一動點M在側面PAB內,它到頂點P的距離與到底面ABC的距離比為2
2
:1

精英家教網
(1)求動點M到頂點P 的距離與它到邊AB的距離之比;
(2)在側面PAB所在平面內建立為如圖所示的直角坐標系,求動點M的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:2012年江蘇省四星高中高三數學小題訓練(7)(解析版) 題型:解答題

已知正三棱錐P-ABC主視圖如圖所示,其中△PAB中,AB=PC=2cm,則這個正三棱錐的左視圖的面積為    cm2

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省蘇州市高考信息數學試卷(正題)(解析版) 題型:解答題

已知正三棱錐P-ABC主視圖如圖所示,其中△PAB中,AB=PC=2cm,則這個正三棱錐的左視圖的面積為    cm2

查看答案和解析>>

同步練習冊答案