【題目】如圖,已知正方形ABCD,點(diǎn)EAB上,點(diǎn)FBC的延長線上,將正方形ABCD沿直線EF翻折,使點(diǎn)B剛好落在AD邊上的點(diǎn)G處,連接GFCD于點(diǎn)H,連接BH,若AG4DH6,則BH_____

【答案】6

【解析】

通過證明△AEG∽△DGH,可得,可設(shè)AE2aGD3a,可求GE的長,由ABAD,列出方程可求a的值,由勾股定理可求BH的長.

解:∵將正方形ABCD沿直線EF翻折,使點(diǎn)B剛好落在AD邊上的點(diǎn)G處,

ABADBCCD,EGBE,∠ABC=∠EGH90°

∵∠AGE+DGH90°,∠AGE+AEG90°

∴∠AEG=∠DGH,且∠A=∠D90°

∴△AEG∽△DGH

∴設(shè)AE2a,GD3a

GE

ABAD

2a+4+3a

a

ABADBCCD12,

CHCDDH1266

BH6

故答案為:6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=2,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到線段CE,線段BD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BF,連接BF,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD的頂點(diǎn)AD分別落在x軸、y軸,OD=2OA=6ADAB=31.則點(diǎn)B的坐標(biāo)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多8元,且購進(jìn)的甲、乙兩種商品件數(shù)相同.

求甲、乙兩種商品的每件進(jìn)價(jià);

該商場將購進(jìn)的甲、乙兩種商品進(jìn)行銷售,甲種商品的銷售單價(jià)為60元,乙種商品的銷售單價(jià)為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價(jià)的七折銷售;乙種商品銷售單價(jià)保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價(jià)至少銷售多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

(1)證明:不論取何值,該函數(shù)圖像與軸總有公共點(diǎn);

(2)若該函數(shù)的圖像與軸交于點(diǎn)(0,3),求出頂點(diǎn)坐標(biāo)并畫出該函數(shù)圖像;

(3)在(2)的條件下,觀察圖像,解答下列問題:

①不等式的的解集是 ;

②若一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則的取值范圍是 ;

③若一元二次方程的范圍內(nèi)有實(shí)數(shù)根,則的取

值范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1yx+6與直線l2ykx+b相交于點(diǎn)A,直線l1y軸相交于點(diǎn)B,直線l2y軸負(fù)半軸相交于點(diǎn)C,OB2OC,點(diǎn)A的縱坐標(biāo)為3

1)求直線l2的解析式;

2)將直線l2沿x軸正方向平移,記平移后的直線為l3,若直線l3與直線l1相交于點(diǎn)D,且點(diǎn)D的橫坐標(biāo)為1,求△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結(jié)論中錯(cuò)誤的是( 。

A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù) y=ax2﹣2ax+c(a>0)的圖象與 x 軸的負(fù)半軸和正半軸分別交于 A、B 兩點(diǎn),與 y 軸交于點(diǎn) C,它的頂點(diǎn)為 P,直線 CP 與過點(diǎn)B 且垂直于 x 軸的直線交于點(diǎn) D,且 CP:PD=1:2,tan∠PDB=

(1) A、B 兩點(diǎn)的坐標(biāo)分別為 A( , ); B( );

(2)求這個(gè)二次函數(shù)的解析式;

(3)在拋物線的對(duì)稱軸上找一點(diǎn)M 使|MC﹣MB|的值最大,則點(diǎn)M 的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組在全校范圍內(nèi)隨機(jī)抽取了50名同學(xué)進(jìn)行“舌尖上的宜興﹣我最喜愛的宜興小吃”調(diào)查活動(dòng),將調(diào)查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計(jì)圖.

請(qǐng)根據(jù)所給信息解答以下問題

(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)若全校有1000名同學(xué),請(qǐng)估計(jì)全校同學(xué)中最喜愛“筍干”的同學(xué)有多少人?

(3)在一個(gè)不透明的口袋中有4個(gè)元全相同的小球,把它們分別標(biāo)號(hào)為四種小吃的序號(hào)A,B,C,D,隨機(jī)地把四個(gè)小球分成兩組,每組兩個(gè)球,請(qǐng)用列表或畫樹狀圖的方法,求出A,B兩球分在同一組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案