精英家教網 > 高中數學 > 題目詳情
2.命題“若x2=1,則x=1或x=-1”的逆否命題為( 。
A.若x2=1,則x≠1且x≠-1B.若x2≠1,則x≠1且x≠-1
C.若x≠1且x≠-1,則x2≠1D.若x≠1或x≠-1,則x2≠1

分析 根據命題“若p則q”的逆否命題“若¬q則¬p”,寫出即可.

解答 解:命題“若x2=1,則x=1或x=-1”的逆否命題是
“若x≠1且x≠-1,則x2≠1”.
故選:C.

點評 本題考查了命題與它的逆否命題的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

12.減函數f(x)=3ax-2a+1,若存在x0∈(-1,1),使f(x0)=0,則實數a的取值范圍是(  )
A.-1<a<$\frac{1}{5}$B.a<-1或a>$\frac{1}{5}$C.a>$\frac{1}{5}$D.-1<a<0

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知函數g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1,設f(x)=$\frac{g(x)}{x}$.
(1)求a、b的值;
(2)若不等式f(lgx)-klgx≥0在$x∈[\sqrt{10},100]$上有解,求實數k的取值范圍;
(3)若f(|2x-1|)+k•$\frac{2}{{|{{2^x}-1}|}}$-3k=0有三個不同的實數解,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.若f(2x+1)=2x2+1,則f(x)=$\frac{1}{2}$x2-x+$\frac{3}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.某學校數學興趣班共有14人,分為兩個小組,在一次階段考試中兩個小組成績的莖葉圖如圖所示,其中甲組學生成績的平均數是88,乙組學生成績的中位數是89,則m+n的值是12.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.已知函數f(x)是(-∞,+∞)上的奇函數,且f(x)的圖象關于直線x=1對稱,當x∈[-1,0]時,f(x)=-x,則f(2017)+f(2018)=-1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線為$y=-\sqrt{2}x$,且一個焦點是拋物線y2=12x的焦點,則該雙曲線的方程為( 。
A.$\frac{y^2}{3}-\frac{x^2}{6}=1$B.$\frac{x^2}{3}-\frac{y^2}{6}=1$C.$\frac{x^2}{6}-\frac{y^2}{3}=1$D.$\frac{y^2}{6}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.方程x2+y2-2x-4y+6=0表示的軌跡為(  )
A.圓心為(1,2)的圓B.圓心為(2,1)的圓C.圓心為(-1,-2)的圓D.不表示任何圖形

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.設a>0且a≠1,則“函數f(x)=ax”在R上是增函數是“函數g(x)=xa”“在(0,+∞)上是增函數”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案