下表是某廠1~4月份用水量(單位:百噸)的一組數(shù)據(jù):
月份x1234
用水量y4.5432.5
由其散點(diǎn)圖可知,用水量y與月份x之間有較好的線性相關(guān)關(guān)系,計(jì)算得線性回歸方程是y=5.25-0.7x,則預(yù)測五月份用水量為
 
百噸.
考點(diǎn):線性回歸方程
專題:概率與統(tǒng)計(jì)
分析:利用線性回歸方程,把x=5代入,得到y(tǒng)的值即可.
解答: 解:∵線性回歸方程是y=5.25-0.7x,
∴x=5時(shí),y=5.25-0.7×5=1.75
故答案為:1.75
點(diǎn)評(píng):本題考查回歸方程的應(yīng)用,是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,長軸端點(diǎn)與短軸端點(diǎn)間的距離為
5
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請(qǐng)分別畫圖說明兩條異面直線在同一個(gè)平面上的正投影可能是:
(1)兩條相交直線;
(2)兩條平行直線;
(3)一條直線和直線外一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
u
=(an+1,n+1),
v
=(an,n)且
u
-
v
=λ(2,1)
(1)證明:數(shù)列{an}為等差數(shù)列;
(2)若數(shù)列{an}的首項(xiàng)a1為奇數(shù),前n項(xiàng)和為Sn,若Sn最小值為-16,求a1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在某個(gè)城市中,M,N兩地之間有南北街道5條、東西街道4條,現(xiàn)要求沿圖中的街道,以最短的路程從M走到N,則不同的走法共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,已知asinA+bsinB=csinC,則角C的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程為ρ=2(ρ>0,0≤θ<2π ),曲線C在點(diǎn)(2,
π
4
)處的切線為l,以極點(diǎn)為坐標(biāo)原點(diǎn),以極軸為x軸的正半軸建立直角坐標(biāo)系,則l的直角坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-a|+a2•x,其中a為常數(shù),若函數(shù)f(x)存在最小值的充要條件是a∈A.
(1)集合A=
 
;
(2)若當(dāng)a∈A時(shí),函數(shù)f(x)的最小值為
1
8
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓的方程是
x=1+2cosθ
y=-2+2sinθ
(θ為參數(shù)),則這個(gè)圓的半徑是( 。
A、1
B、2
C、
1
2
D、
2

查看答案和解析>>

同步練習(xí)冊(cè)答案