【題目】已知奇函數(shù)fx)=aa為常數(shù)).

1)求a的值;

2)若函數(shù)gx)=|2x+1fx|k2個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;

3)若x[2,﹣1]時(shí),不等式fx恒成立,求實(shí)數(shù)m的取值范圍.

【答案】(1) ;(2)k∈(0,1);(3)[4,+∞).

【解析】

1)由fx)為R上的奇函數(shù)可得f0)=0,解方程可得a;

2)由題意可得方程|2x1|k02個(gè)解,即k|2x1|2個(gè)解,即函數(shù)yky|2x1|的圖象有2個(gè)交點(diǎn),畫出圖象即可得到所求范圍;

3)由題意可得m≥2xx[2,﹣1]時(shí)恒成立,由gx)=2xR上單調(diào)遞減,即可得到所求范圍.

1fx)是定義在R上的奇函數(shù),

可得f0)=a10,即a1,

可得fx)=1,

f(﹣x+fx0,

fx)為R上的奇函數(shù),

a1

2)函數(shù)gx)=|2x+1fx|k2個(gè)零點(diǎn)

方程|2x1|k02個(gè)解,

k|2x1|2個(gè)解,

即函數(shù)yky|2x1|的圖象有2個(gè)交點(diǎn),

由圖象得k∈(01);

3x[2,﹣1]時(shí),fx,即1,

m≥2xx[2,﹣1]時(shí)恒成立,

gx)=2xR上單調(diào)遞減,

x[2,﹣1]時(shí),gx)的最大值為g(﹣2)=4,

m≥4,即m的取值范圍是[4,+∞).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從3名骨科、4名腦外科和5名內(nèi)科醫(yī)生中選派5人組成一個(gè)抗震救災(zāi)醫(yī)療小組,則骨科、腦外科和內(nèi)科醫(yī)生都至少有1人的選派方法種數(shù)是(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一半徑為的水輪如圖所示,水輪圓心距離水面;已知水輪按逆時(shí)針做勻速轉(zhuǎn)動(dòng),每轉(zhuǎn)一圈,如果當(dāng)水輪上點(diǎn)從水中浮現(xiàn)時(shí)(圖中點(diǎn))開始計(jì)算時(shí)間.

(1)以水輪所在平面與水面的交線為軸,以過點(diǎn)且與水面垂直的直線為軸,建立如圖所示的直角坐標(biāo)系,將點(diǎn)距離水面的高度表示為時(shí)間的函數(shù);

(2)點(diǎn)第一次到達(dá)最高點(diǎn)大約要多長時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a+b=2,b>0,則當(dāng)a=時(shí), 取得最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 =1(a>b>0)的左焦點(diǎn)為F,離心率為 ,過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左,右頂點(diǎn),過點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若 =8,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司制定了一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:當(dāng)銷售利潤不超過10萬元時(shí),按銷售利潤的16%進(jìn)行獎(jiǎng)勵(lì);當(dāng)銷售利潤超過10萬元時(shí),若超出A萬元,則超出部分按2log5A+1)進(jìn)行獎(jiǎng)勵(lì).記獎(jiǎng)金y(單位:萬元),銷售利潤x(單位:萬元)

1)寫出該公司激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案的函數(shù)模型;

2)如果業(yè)務(wù)員老張獲得5.6萬元的獎(jiǎng)金,那么他的銷售利潤是多少萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) (a∈R,e為自然對數(shù)的底數(shù)),若曲線y=sinx上存在點(diǎn)(x0 , y0)使得f(f(y0))=y0 , 則a的取值范圍是(
A.[1,e]
B.[e1﹣1,1]
C.[1,e+1]
D.[e1﹣1,e+1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)
(1)求橢圓C的離心率:
(2)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且 ,求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定常數(shù)c>0,定義函數(shù)f(x)=2|x+c+4|﹣|x+c|.?dāng)?shù)列a1 , a2 , a3 , …滿足an+1=f(an),n∈N*
(1)若a1=﹣c﹣2,求a2及a3;
(2)求證:對任意n∈N* , an+1﹣an≥c;
(3)是否存在a1 , 使得a1 , a2 , …,an , …成等差數(shù)列?若存在,求出所有這樣的a1;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案