若點(diǎn)P(x,y)在曲線(為參數(shù))上,則使x2+y2取得最大值的點(diǎn)P的坐標(biāo)是

    A.(6,-8)                            B.(68)

    C.(3,-4)                            D.(3,4)

 

答案:A
解析:

解析:化參數(shù)方程為普通方程后得.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=px-
px
-2lnx、
(Ⅰ)若p=3,求曲f9想)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若p>0且函f(x)在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)p的取值范圍;
(Ⅲ)若函數(shù)y=f(x)在x∈(0,3)存在極值,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•臨沂二模)已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直線y=0,x=a(0<a≤1)和曲線y=x3圍成的曲邊三角形的平面區(qū)域,若向區(qū)域Ω上隨機(jī)投一點(diǎn)P,點(diǎn)P落在區(qū)域A內(nèi)的概率是
1
64
,則a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖南)函數(shù)f(x)=sin (ωx+φ)的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點(diǎn),A,C為圖象與x軸的兩個(gè)交點(diǎn),B為圖象的最低點(diǎn).
(1)若φ=
π
6
,點(diǎn)P的坐標(biāo)為(0,
3
3
2
),則ω=
3
3

(2)若在曲線段
ABC
與x軸所圍成的區(qū)域內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)在△ABC內(nèi)的概率為
π
4
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,成都市準(zhǔn)備在南湖的一側(cè)修建一條直路EF,另一側(cè)修建一條觀光大道,大道的前一部分為曲線段FBC,該曲線段是函數(shù)y=Asin(ωx+
3
),(A>0,ω>0),x∈[-4,0]
時(shí)的圖象,且圖象的最高點(diǎn)為B(-1,3),大道的中間部分為長(zhǎng)1.5km的直線段CD,且CD∥EF.大道的后一部分是以O(shè)為圓心的一段圓弧DE.
(1)求曲線段FBC的解析式,并求∠DOE的大;
(2)若南湖管理處要在圓弧大道所對(duì)應(yīng)的扇形DOE區(qū)域內(nèi)修建如圖所示的水上樂(lè)園PQMN,問(wèn)點(diǎn)P落在圓弧DE上何處時(shí),水上樂(lè)園的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•深圳二模)已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直線x=1,y=0和曲線y=x3圍成的曲邊三角形的平面區(qū)域,若向區(qū)域Ω上隨機(jī)投一點(diǎn)P,則點(diǎn)P落在區(qū)域A內(nèi)的概率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案