【題目】已知橢圓 的左,右焦點(diǎn),,上頂點(diǎn)為,,為橢圓上任意一點(diǎn),且的面積最大值為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn).為橢圓上的兩個(gè)不同的動(dòng)點(diǎn),且(為坐標(biāo)原點(diǎn)),則是否存在常數(shù),使得點(diǎn)到直線的距離為定值?若存在,求出常數(shù)和這個(gè)定值;若不存在,請(qǐng)說明理由.
【答案】(Ⅰ) ;(Ⅱ) 時(shí),
【解析】
(Ⅰ)結(jié)合題目條件得,再由條件的面積最大值為得,結(jié)合,聯(lián)立方程組即可求出,從而得到橢圓方程.
(Ⅱ)當(dāng)直線斜率存在時(shí),設(shè)出直線方程,求出原點(diǎn)到直線的距離,再聯(lián)立直線方程與橢圓方程,消去得到關(guān)于的一元二次方程,然后利用韋達(dá)定理得到,結(jié)合數(shù)量積的坐標(biāo)運(yùn)算以及將轉(zhuǎn)化為,其對(duì)任意恒成立,從而得到關(guān)于和的方程組,從而求出和;再驗(yàn)證斜率不存在的情況也符合.
(Ⅰ)由題得, ,解得 ,
橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)設(shè) ,,當(dāng)直線AB的斜率存在時(shí),
設(shè)其直線方程為:,
則原點(diǎn)到直線的距離為,
聯(lián)立方程,
化簡(jiǎn)得,,
由得,
則,,
即對(duì)任意的恒成立,
則 ,,
當(dāng)直線斜率不存在時(shí),也成立.
故當(dāng)時(shí),點(diǎn)到直線AB的距離為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面四邊形ABCD,,,,將沿BD翻折到與面BCD垂直的位置.
Ⅰ證明:面ABC;
Ⅱ若E為AD中點(diǎn),求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三國(guó)時(shí)代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個(gè)全等的直角三角形及一個(gè)小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲500顆米粒(大小忽略不計(jì),取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為( )
A. 134 B. 67 C. 200 D. 250
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),、是分別過、點(diǎn)的圓的切線,過此圓上的另一個(gè)點(diǎn)(點(diǎn)是圓上任一不與、重合的動(dòng)點(diǎn))作此圓的切線,分別交、于、兩點(diǎn),且、兩直線交于點(diǎn).
()設(shè)切點(diǎn)坐標(biāo)為,求證:切線的方程為.
()設(shè)點(diǎn)坐標(biāo)為,試寫出與的關(guān)系表達(dá)式(寫出詳細(xì)推理與計(jì)算過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn),定直線,動(dòng)圓經(jīng)過點(diǎn)且與直線相切.
(I)求動(dòng)圓圓心的軌跡方程;
(II)設(shè)點(diǎn)為曲線上不同的兩點(diǎn),且,過兩點(diǎn)分別作曲線的兩條切線,且二者相交于點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,垂直于梯形所在的平面,為的中點(diǎn),,四邊形為矩形,線段交于點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值;
(3)在線段上是否存在一點(diǎn),使得與平面所成角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,直線,點(diǎn)在直線上.
(1)若點(diǎn)的橫坐標(biāo)為2,求過點(diǎn)的圓的切線方程.
(2)已知圓的半徑為2,求圓與圓的公共弦的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的兩個(gè)焦點(diǎn),,設(shè),分別是橢圓的上、下頂點(diǎn),且四邊形的面積為,其內(nèi)切圓周長(zhǎng)為.
(1)求橢圓的方程;
(2)當(dāng)時(shí),,為橢圓上的動(dòng)點(diǎn),且,試問:直線是否恒過一定點(diǎn)?若是,求出此定點(diǎn)坐標(biāo),若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD為菱形,G為AC與BD交點(diǎn),,
(I)證明:平面平面;
(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com